论文标题
中尺度异质性空间分布对液氮液硝基甲烷的震动到测得过渡的影响
Effect of spatial distribution of mesoscale heterogeneities on the shock-to-detonation transition in liquid nitromethane
论文作者
论文摘要
腔体以微泡形式的敏化作用对均质液体爆炸性的冲击开始进行了计算研究。虽然长期以来,爆炸物中的空隙的存在会引起所谓的热点,从而极大地加速了全球反应速率,但计算的能力可以解决冲击阵线与爆炸反应区规模上存在的异质性相互作用的细节,直到最近才变得可行。在这项研究中,通过使用图形处理单元(GPU)加速计算,可以通过爆炸性通过爆炸性解决爆发性,同时在中尺度上完全解决特征,从而可以通过使用图形处理单元(GPU)加速计算来进行空间分布的影响。在二维模拟中检查了不同空间的空间分布,包括定期的腔体阵列,稍微扰动的阵列,随机阵列(在空腔上施加的最小间距不同)以及随机分布的腔体簇。与先前的实验结果一致的给定输入冲击强度,腔的存在能够减少引发爆炸所需的时间 - 对于给定的输入冲击强度----超过50%。与常规的腔体相比,随机分布腔体的爆炸开始时间减少了15-20%。与随机阵列相比,聚集腔的聚集 - - - - - 爆炸开始时间的额外减少了10%。聚类的效果表明并不是簇形成有效较大的腔体的簇的结果,而是由于簇之间在显微镜上发生冲击载荷时簇之间的相互作用所致。
The sensitizing effect of cavities in the form of microbubbles on the shock initiation of a homogeneous liquid explosive is studied computationally. While the presence of voids in an explosive has long been known to induce so-called hot spots that greatly accelerate the global reaction rate, the ability to computationally resolve the details of the interaction of the shock front with heterogeneities existing on the scale of the detonation reaction zone has only recently become feasible. In this study, the influence of the spatial distribution of air-filled cavities has been examined, enabled by the use of graphic processing unit (GPU) accelerated computations that can resolve shock initiation and detonation propagation through an explosive while fully resolving features at the mesoscale. Different spatial distributions of cavities are examined in two-dimensional simulations, including regular arrays of cavities, slightly perturbed arrays, random arrays (with varying minimum spacing being imposed on the cavities), and randomly distributed clusters of cavities. The presence of the cavities is able to reduce the time required to initiate detonation---for a given input shock strength---by greater than 50%, in agreement with previous experimental results. Randomly distributing the cavities results in a 15-20% decrease in detonation initiation time in comparison to a regular array of cavities. Clustering the cavities---as would occur in the case of agglomeration---results in an additional 10% decrease in detonation initiation time in comparison to random arrays. The effect of clustering is shown not to be a result of the clusters forming an effectively larger cavity, but rather due to interactions between clusters upon shock loading occurring on the microscale.