论文标题
lelong的全质量交叉点的电流数量
Lelong numbers of currents of full mass intersection
论文作者
论文摘要
我们研究混合环境中紧凑的Kaehler歧管上的全质量交点的lelong数量。由于Darvas-Di Nezza-Lu,我们的主要定理涵盖了最近的一些结果。我们方法中的关键要素之一是伪芬类产品的新概念,该类别捕获了给定的伪富集类的“总相交”的某些“多极部分”。
We study Lelong numbers of currents of full mass intersection on a compact Kaehler manifold in a mixed setting. Our main theorems cover some recent results due to Darvas-Di Nezza-Lu. One of the key ingredients in our approach is a new notion of products of pseudoeffective classes which captures some "pluripolar part" of the "total intersection" of given pseudoeffective classes.