论文标题

ADIC:使用近似计算的65nm CMO中的异常检测集成电路

ADIC: Anomaly Detection Integrated Circuit in 65nm CMOS utilizing Approximate Computing

论文作者

Kar, Bapi, Gopalakrishnan, Pradeep Kumar, Bose, Sumon Kumar, Roy, Mohendra, Basu, Arindam

论文摘要

在本文中,我们提出了基于单级分类器(OCC)神经网络的低功率异常检测集成电路(ADIC)。 ADIC通过(a)仔细选择用于在线学习的算法和(b)近似计算技术的组合来实现低功率操作,以降低平均能量。特别是,在线伪源更新方法(Opium)用于培训随机神经网络,以快速和资源的学习。当使用使用相同数量的数据样本培训的较轻版本的鸦片方法训练时,可以额外节省42%的能源。选择了K基本学习者方法的合奏,而不是具有大量神经元的单个分类器,以减少学习记忆。这也可以通过基于异常检测来动态变化神经网络大小来实现近似计算。 ADIC在65nm的CMO中制造,具有K = 7个基础学习者(BL),每个BL中有32个神经元,并在VDD = 0.75V时分别消散11.87pj/op和3.35pj/op。此外,在NASA轴承数据集上进行了评估,大约80%的芯片可以在终生的99%中关闭,导致能源效率为0.48pj/op,在整个生命周期中,在VDD = 1.2V上运行的完整精确计算降低了18.5倍。

In this paper, we present a low-power anomaly detection integrated circuit (ADIC) based on a one-class classifier (OCC) neural network. The ADIC achieves low-power operation through a combination of (a) careful choice of algorithm for online learning and (b) approximate computing techniques to lower average energy. In particular, online pseudoinverse update method (OPIUM) is used to train a randomized neural network for quick and resource efficient learning. An additional 42% energy saving can be achieved when a lighter version of OPIUM method is used for training with the same number of data samples lead to no significant compromise on the quality of inference. Instead of a single classifier with large number of neurons, an ensemble of K base learner approach is chosen to reduce learning memory by a factor of K. This also enables approximate computing by dynamically varying the neural network size based on anomaly detection. Fabricated in 65nm CMOS, the ADIC has K = 7 Base Learners (BL) with 32 neurons in each BL and dissipates 11.87pJ/OP and 3.35pJ/OP during learning and inference respectively at Vdd = 0.75V when all 7 BLs are enabled. Further, evaluated on the NASA bearing dataset, approximately 80% of the chip can be shut down for 99% of the lifetime leading to an energy efficiency of 0.48pJ/OP, an 18.5 times reduction over full-precision computing running at Vdd = 1.2V throughout the lifetime.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源