论文标题

通过机器学习的强液和脆弱液体的统一框架:液体二氧化硅的研究

Unifying framework for strong and fragile liquids via machine learning: a study of liquid silica

论文作者

Cubuk, Ekin D., Liu, Andrea J., Kaxiras, Efthimios, Schoenholz, Samuel S.

论文摘要

玻璃形液体的脆弱性表征其放松动力学随着冷却而减速的速度迅速。强液的粘度遵循Arrhenius定律,其独立于温度的屏障高度到负责放松的重排,而脆弱的液体的动态速度更快,表明屏障高度随温度降低而增加。强玻璃形式通常是网络玻璃,而脆弱的玻璃表面通常是分子或硬球状的。由于这些差异在显微镜水平上,通常会与理论观点分开处理强和脆弱的玻璃形象。二氧化硅是低温下的原型强玻璃形式,但在较高温度下也表现出神秘的强到碎片跨界。在这里,我们表明,柔软度是一种基于结构的机器学习的参数,以前已应用于脆弱的玻璃形式,可以在强和脆弱的方向上以及通过强到范围的跨界车中对模型液体二氧化硅进行了有用的描述。与脆弱的玻璃形式一样,在所有机制中,柔软度与动态之间的关系是不变的,而Arrhenius则是不变的,但是平均柔软度随温度而变化。二氧化硅中的强到触发式跨界并不是由于突然的结构变化,而是可以通过简单的Arrhenius形式来解释,而Arrhenius形式具有不断变化的局部结构。我们的结果将液体二氧化硅的研究统一在单个简单的概念图中。

The fragility of a glassforming liquid characterizes how rapidly its relaxation dynamics slow down with cooling. The viscosity of strong liquids follows an Arrhenius law with a temperature-independent barrier height to rearrangements responsible for relaxation, whereas fragile liquids experience a much faster increase in their dynamics, suggesting a barrier height that increases with decreasing temperature. Strong glassformers are typically network glasses, while fragile glassformers are typically molecular or hard-sphere-like. As a result of these differences at the microscopic level, strong and fragile glassformers are usually treated separately from a theoretical point of view. Silica is the archetypal strong glassformer at low temperatures, but also exhibits a mysterious strong-to-fragile crossover at higher temperatures. Here we show that softness, a structure-based machine learned parameter that has previously been applied to fragile glassformers provides a useful description of model liquid silica in the strong and fragile regimes, and through the strong-to-fragile crossover. Just as for fragile glassformers, the relationship between softness and dynamics is invariant and Arrhenius in all regimes, but the average softness changes with temperature. The strong-to-fragile crossover in silica is not due to a sudden, qualitative change in structure, but can be explained by a simple Arrhenius form with a continuously and linearly changing local structure. Our results unify the study of liquid silica under a single simple conceptual picture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源