论文标题
基于尖晶石结构的高性能热电氧化物
High-Performance Thermoelectric Oxides Based on Spinel Structure
论文作者
论文摘要
高性能热电氧化物可以为传感和电子工业中的集成和嵌入式应用提供出色的能量解决方案。然而,与其他类别的热电材料相比,氧化物通常会遭受较低的锯齿系数。为了寻找高性能的热电氧化物,我们基于GGA $+U $形式主义提出了全面的密度功能研究,调查了尖晶石结构的3D和4D转型金属的铁氧体。因此,我们预测mnfe $ _2 $ o $ _4 $和rhfe $ _2 $ o $ _4 $具有$ \ sim \ sim \ pm 600 $ $ $ $ $ $ $ $ $ $ v k $^{ - 1} $的Seebeck系数,这是通过轻孔和电子掺杂来实现的。此外,CRFE $ _2 $ o $ _4 $和MOFE $ _2 $ o $ _4 $具有更高的环境SeeBeck系数,$ \ sim \ sim \ pm 700 $ $ $ $ $ $ v k $^k $^{ - 1} $。在后一种化合物中,Seebeck系数大约是温度的平坦功能,最高为$ \ sim 700 $ K,提供了极大的操作便利性。此外,Mofe $ _2 $ o $ _4 $掺杂$ 10^{19} $ hores/cm $^3 $具有计算的热电功率因数$ 689.81 $ $ $ $ $ $ w k $^k $^{ - 2} $ m $^{ - 1} $^{ - 1} $ 300 $ K,$ 300 $} $ 455.67 $ 455.67 $ k, m $^{ - 1} $ $ 600 $ k。此处预测的热电特性可以将这些热电氧化物带入传统上较低的温度下的应用,传统上可以通过更具毒性,更繁重的材料来实现。
High-performance thermoelectric oxides could offer a great energy solution for integrated and embedded applications in sensing and electronics industries. Oxides, however, often suffer from low Seebeck coefficient when compared with other classes of thermoelectric materials. In search of high-performance thermoelectric oxides, we present a comprehensive density functional investigation, based on GGA$+U$ formalism, surveying the 3d and 4d transition-metal-containing ferrites of the spinel structure. Consequently, we predict MnFe$_2$O$_4$ and RhFe$_2$O$_4$ have Seebeck coefficients of $\sim \pm 600$ $μ$V K$^{-1}$ at near room temperature, achieved by light hole and electron doping. Furthermore, CrFe$_2$O$_4$ and MoFe$_2$O$_4$ have even higher ambient Seebeck coefficients at $\sim \pm 700$ $μ$V K$^{-1}$. In the latter compounds, the Seebeck coefficient is approximately a flat function of temperature up to $\sim 700$ K, offering a tremendous operational convenience. Additionally, MoFe$_2$O$_4$ doped with $10^{19}$ holes/cm$^3$ has a calculated thermoelectric power factor of $689.81$ $μ$W K$^{-2}$ m$^{-1}$ at $300$ K, and $455.67$ $μ$W K$^{-2}$ m$^{-1}$ at $600$ K. The thermoelectric properties predicted here can bring these thermoelectric oxides to applications at lower temperatures traditionally fulfilled by more toxic and otherwise burdensome materials.