论文标题
非标准分析,变形量化和(非)交换代数几何形状的某些逻辑方面
Nonstandard analysis, deformation quantization and some logical aspects of (non)commutative algebraic geometry
论文作者
论文摘要
本文调查结果与B. plotkin和V. Remeslennikov的著名作品有关,在代数,逻辑和几何形状的边缘。我们从对论文和动机的简要回顾开始。第一部分涉及模型理论。在第2.1节中,我们描述了几何等效性,基本等效性和代数的同种型。我们从普遍代数几何形状的位置看这些概念,并强调一阶刚性的情况。在此设置中,Plotkin关于自由对象的(自动)内态的自动形态结构的问题,类别的自动等效性非常自然和重要。第2.2节专用于Plotkin问题的特定情况。第2.3节致力于Plotkin的问题,以解决多项式符号切除型组的自动形态。通过使用模型理论(非标准分析)在研究韦尔代数的符号构成和自动形态的群体之间,通过使用模型理论(非标准分析)在数学物理学上有应用。最后两个部分介绍了非交通和交换代数几何形状的算法问题。第3.1节在非交通性情况下专门为格布纳基础。尽管存在用于检查平等性的算法,但零除数和nilpotency问题在算法上是无法解决的。第3.2节与代数品种嵌入的问题有关;给出了其在特征零字段上其算法不可证明的证明的草图。
This paper surveys results related to well-known works of B. Plotkin and V. Remeslennikov on the edge of algebra, logic and geometry. We start from a brief review of the paper and motivations. The first sections deal with model theory. In Section 2.1 we describe the geometric equivalence, the elementary equivalence, and the isotypicity of algebras. We look at these notions from the positions of universal algebraic geometry and make emphasis on the cases of the first order rigidity. In this setting Plotkin's problem on the structure of automorphisms of (auto)endomorphisms of free objects, and auto-equivalence of categories is pretty natural and important. Section 2.2 is dedicated to particular cases of Plotkin's problem. Section 2.3 is devoted to Plotkin's problem for automorphisms of the group of polynomial symplectomorphisms. This setting has applications to mathematical physics through the use of model theory (non-standard analysis) in the studying of homomorphisms between groups of symplectomorphisms and automorphisms of the Weyl algebra. The last two sections deal with algorithmic problems for noncommutative and commutative algebraic geometry. Section 3.1 is devoted to the Gröbner basis in non-commutative situation. Despite the existence of an algorithm for checking equalities, the zero divisors and nilpotency problems are algorithmically unsolvable. Section 3.2 is connected with the problem of embedding of algebraic varieties; a sketch of the proof of its algorithmic undecidability over a field of characteristic zero is given.