论文标题
加权添加剂的改进
Improved Weighted Additive Spanners
论文作者
论文摘要
图形跨度和仿真器是稀疏结构,大致保持原始图的距离。尽管在添加剂上进行了大量工作,但到目前为止,对加权图的关注很少。直到最近[ABSKS20]将经典+2(分别为+4)扩展到了尺寸$ o(n^{3/2})的未加权图的跨度,$ o(sesp。,$ o(n^{7/5})$)到加权设置,添加误差为$ +2W $($ +2W $,$ +4W $)。这意味着,对于每对$ u,v $,添加剂拉伸最多都是$+2w_ {u,v} $,其中$ w_ {u,v} $是最短$ u-v $路径的最大边缘重量。此外,[absks20]显示了一种算法,产生了$+8w_ {max} $ spanner的尺寸$ o(n^{4/3})$,这里$ w_ {max} $是整个图中的最大边缘重量。 在这项工作中,我们通过设计一种简单的确定性算法的$+(6+ \ varepsilon)w $跨度的加权图(N^{4/3})$(对于任何常量的$ \ varepsilon> 0 $),因此几乎与经典的+6级覆盖物匹配$ o(n n^n^$ o o(n n^$ o o o(n varepsilon> 0 $)),此外,我们显示了一个$+(2+ \ varepsilon)w $ subsetwise spanner的大小$ o(n \ cdot \ sqrt {| s |})$,改善了[absks20]的$+4W_ {max} $ result(尺寸相同)。我们还显示了一个简单的随机算法,适用于$+4W $ simulator,该算法的大小$ \ tilde {o}(n^{4/3})$。 此外,我们表明我们的技术适用于具有线性尺寸的非常稀疏的添加剂。对于加权图,我们使用简单确定性算法的变体,该算法产生线性尺寸$+\ tilde {o}(\ sqrt {n} \ cdot w)$ spanner,并且我们还获得了大小和拉伸之间的权衡。 最后,将[DHZ00]的技术推广到未加权图的情况下,我们设计了一种有效的随机算法,生成了$+2W $ spanner,用于$ \ tilde {o}的加权图{o}(n^{3/2})$ in $ \ tilde {o} $ \ tilde {o}(n^o}(n^2)$。
Graph spanners and emulators are sparse structures that approximately preserve distances of the original graph. While there has been an extensive amount of work on additive spanners, so far little attention was given to weighted graphs. Only very recently [ABSKS20] extended the classical +2 (respectively, +4) spanners for unweighted graphs of size $O(n^{3/2})$ (resp., $O(n^{7/5})$) to the weighted setting, where the additive error is $+2W$ (resp., $+4W$). This means that for every pair $u,v$, the additive stretch is at most $+2W_{u,v}$, where $W_{u,v}$ is the maximal edge weight on the shortest $u-v$ path. In addition, [ABSKS20] showed an algorithm yielding a $+8W_{max}$ spanner of size $O(n^{4/3})$, here $W_{max}$ is the maximum edge weight in the entire graph. In this work we improve the latter result by devising a simple deterministic algorithm for a $+(6+\varepsilon)W$ spanner for weighted graphs with size $O(n^{4/3})$ (for any constant $\varepsilon>0$), thus nearly matching the classical +6 spanner of size $O(n^{4/3})$ for unweighted graphs. Furthermore, we show a $+(2+\varepsilon)W$ subsetwise spanner of size $O(n\cdot\sqrt{|S|})$, improving the $+4W_{max}$ result of [ABSKS20] (that had the same size). We also show a simple randomized algorithm for a $+4W$ emulator of size $\tilde{O}(n^{4/3})$. In addition, we show that our technique is applicable for very sparse additive spanners, that have linear size. For weighted graphs, we use a variant of our simple deterministic algorithm that yields a linear size $+\tilde{O}(\sqrt{n}\cdot W)$ spanner, and we also obtain a tradeoff between size and stretch. Finally, generalizing the technique of [DHZ00] for unweighted graphs, we devise an efficient randomized algorithm producing a $+2W$ spanner for weighted graphs of size $\tilde{O}(n^{3/2})$ in $\tilde{O}(n^2)$ time.