论文标题
对注射因素的离散符合群体的外部作用的分类
Classification of outer actions of discrete amenable groupoids on injective factors
论文作者
论文摘要
我们将离散的群体固定在注入性因素上分类(或$ \ Mathscr {g} $ - 内核)。我们的方法基于统一的分类方法分类的方法,并基于离散的对等效关系的共同学定理的共同体学定理。我们不使用Katayama-Takesaki型分辨率组方法。
We classify outer actions (or $\mathscr{G}$-kernels) of discrete amenable groupoids on injective factors. Our method based on unified approach for classification of discrete amenable groups actions, and cohomology reduction theorem of discrete amenable equivalence relations. We do not use Katayama-Takesaki type resolution group approach.