论文标题
在社会意识网络中使用兴趣树的数据传播数据
Data Dissemination Using Interest Tree in Socially Aware Networking
论文作者
论文摘要
社会意识的网络(SAN)利用移动用户的社会特征来简化机会性环境中的数据传播协议。该领域的现有协议利用了各种社会特征,例如用户兴趣,社会相似性和社区结构来提高数据传播的性能。但是,用户兴趣与其对数据传播效率的影响之间的相互关系尚未得到充分探讨。在本文中,我们分析了用户兴趣之间的各种关系,并使用基于层的结构对其进行建模,以便在SAN范式中形成社交社区。我们提出了INT-Tree,这是一种基于兴趣树的方案,该方案使用用户兴趣之间的关系来改善数据传播的性能。 Int-Tree的核心是兴趣树,这是一种基于树木的社区结构,结合了两个社会特征,即社区和社会关系的密度,以支持数据传播。模拟结果表明,与两个基准方案,先知和流行病路线相比,INT-Tree达到了较高的输送比,下开销较低。此外,Int-Tree可以平均使用1.36的HOP计数,并且在缓冲区大小,实时时间(TTL)和仿真持续时间方面可以忍受延迟。最后,Int-Tree通过各种参数保持稳定的性能。
Socially aware networking (SAN) exploits social characteristics of mobile users to streamline data dissemination protocols in opportunistic environments. Existing protocols in this area utilized various social features such as user interests, social similarity, and community structure to improve the performance of data dissemination. However, the interrelationship between user interests and its impact on the efficiency of data dissemination has not been explored sufficiently. In this paper, we analyze various kinds of relationships between user interests and model them using a layer-based structure in order to form social communities in SAN paradigm. We propose Int-Tree, an Interest-Tree based scheme which uses the relationship between user interests to improve the performance of data dissemination. The core of Int-Tree is the interest-tree, a tree-based community structure that combines two social features, i.e. density of a community and social tie, to support data dissemination. The simulation results show that Int-Tree achieves higher delivery ratio, lower overhead, in comparison to two benchmark protocols, PROPHET and Epidemic routing. In addition, Int-Tree can perform with 1.36 hop counts in average, and tolerable latency in terms of buffer size, time to live (TTL) and simulation duration. Finally, Int-Tree keeps stable performance with various parameters.