论文标题
限制在球体上的地球图纸的交叉数字
Limiting crossing numbers for geodesic drawings on the sphere
论文作者
论文摘要
我们在单位球上介绍了完整的两部分图$ k_ {n,n} $的随机地理图的模型$ \ mathbb {s}^2 $。最近已经证明,许多这样的措施给出了其交叉数字近似为zarankiewicz号码的图纸($ k_ {n,n} $的猜想交叉数)。在本文中,我们考虑与此类随机图相关的相交图。我们证明,对于任何概率度量,在图限制的意义上,所得的随机相交图构成了收敛的图序列。只要有抗量度对称,限制图形的边缘密度就与这两种度量无关。但是,这表明三角形密度的行为不同。我们检查了一个特定的随机模型,对抗图纸的爆炸$ d $ $ k_ {4,4} $,并表明相应的交叉杂交图中的三角形密度取决于$ d $中包含边缘的大圈之间的角度,并且可以在此间隔$ \ bigl(\ freac \ freac \ freac {83}} {122888888888888888年{122888888888888) \ frac {128} {12288} \ bigr)$。
We introduce a model for random geodesic drawings of the complete bipartite graph $K_{n,n}$ on the unit sphere $\mathbb{S}^2$ in $\mathbb{R}^3$, where we select the vertices in each bipartite class of $K_{n,n}$ with respect to two non-degenerate probability measures on $\mathbb{S}^2$. It has been proved recently that many such measures give drawings whose crossing number approximates the Zarankiewicz number (the conjectured crossing number of $K_{n,n}$). In this paper we consider the intersection graphs associated with such random drawings. We prove that for any probability measures, the resulting random intersection graphs form a convergent graph sequence in the sense of graph limits. The edge density of the limiting graphon turns out to be independent of the two measures as long as they are antipodally symmetric. However, it is shown that the triangle densities behave differently. We examine a specific random model, blow-ups of antipodal drawings $D$ of $K_{4,4}$, and show that the triangle density in the corresponding crossing graphon depends on the angles between the great circles containing the edges in $D$ and can attain any value in the interval $\bigl(\frac{83}{12288}, \frac{128}{12288}\bigr)$.