论文标题
建模冥王星的最小压力:对雾兹的影响
Modeling Pluto's Minimum Pressure: Implications for Haze Production
论文作者
论文摘要
冥王星的表面具有异质性,尽管每个轨道的全局雾剂沉积速率约为1微米(Cheng等,2017; Grundy等,2018)。尽管沉积速率可能存在空间变化,但尚未严格量化这一点,而天真的雾度应比观察到的更均匀地覆盖表面。解释这种矛盾的一种方法是在表面上的大气压下降到足以中断雾霾产生并阻止颗粒沉积到表面的一部分中,从而驱动异质性。如果表面压力下降到小于10^-3-10^-4微骨,并且CH4混合比在观察到的2015年值时保持恒定,则大气变得透明于紫外线辐射(Young等,2018),这将在其来源关闭雾霾产生。如果表面压力降至0.06微贝以下,则大气将不再全球,而仅在表面的最温暖部分局部,从而限制了沉积的位置(Spencer等,1997)。在冥王星目前的大气中,雾兹单体在0.5 microbar开始时一起聚集成骨料颗粒。如果表面压力低于此极限,则在一年中和不同位置的不同时间沉积的颗粒的出现可能会有所不同。我们使用VT3D(Young,2017年)VT3D在当前和过去的轨道配置中对冥王星的表面压力进行建模,以进行四种可能的静态N2冰分布:观察到的北半球分布,(1)(1)裸露的南半球,(2)南极盖(2)南极盖((3)南部的Zonal Zonal Zonal Zonal Zonal Zonal band,最终(4)次数(4)次数(4)在内部的边界除外。我们还提出了一项敏感性研究,显示了移动N2冰的影响...(续)。
Pluto has a heterogeneous surface, despite a global haze deposition rate of ~1 micrometer per orbit (Cheng et al., 2017; Grundy et al., 2018). While there could be spatial variation in the deposition rate, this has not yet been rigorously quantified, and naively the haze should coat the surface more uniformly than was observed. One way (among many) to explain this contradiction is for atmospheric pressure at the surface to drop low enough to interrupt haze production and stop the deposition of particles onto part of the surface, driving heterogeneity. If the surface pressure drops to less than 10^-3 - 10^-4 microbar and the CH4 mixing ratio remains nearly constant at the observed 2015 value, the atmosphere becomes transparent to ultraviolet radiation (Young et al., 2018), which would shut off haze production at its source. If the surface pressure falls below 0.06 microbar, the atmosphere ceases to be global, and instead is localized over only the warmest part of the surface, restricting the location of deposition (Spencer et al., 1997). In Pluto's current atmosphere, haze monomers collect together into aggregate particles at beginning at 0.5 microbar; if the surface pressure falls below this limit, the appearance of particles deposited at different times of year and in different locations could be different. We use VT3D, an energy balance model (Young, 2017), to model the surface pressure on Pluto in current and past orbital configurations for four possible static N2 ice distributions: the observed northern hemisphere distribution with (1) a bare southern hemisphere, (2) a south polar cap, (3) a southern zonal band, and finally (4) a distribution that is bare everywhere except inside the boundary of Sputnik Planitia. We also present a sensitivity study showing the effect of mobile N2 ice...(cont.)