论文标题

驾驶员学习城市规模的动态平衡

Drivers learn city-scale dynamic equilibrium

论文作者

Zhang, Ruda, Ghanem, Roger

论文摘要

了解按需移动服务中的驾驶员行为对于设计高效且可持续的运输模型至关重要。驾驶员的交付策略是充分理解的,但是他们的搜索策略和学习过程仍然缺乏经验验证的模型。在这里,我们提供了驱动程序搜索策略和学习动态的游戏理论模型,解释热力学框架中的集体结果,并在经验上验证其各种含义。我们在多市场寡头模型中捕获驱动程序搜索策略,该模型具有独特的NASH平衡,并且在全球渐近稳定。因此,可以通过启发式学习规则获得平衡,在这些规则中,驾驶员追求激励梯度或简单地模仿他人。为了帮助了解城市规模的现象,我们通过热力学定律提供了宏观的视野。在纽约市,有8.7亿次超过50k驾驶员的旅行,我们表明均衡很好地解释了驾驶员搜索行为的时空模式,并估算了经验性的构成关系。我们发现,新的驱动力在一年内学习了平衡,而那些待更长的人学习得更好。对新竞争的集体反应也是预期的。在按需服务中对驾驶员战略的实证研究中,我们的工作研究了最长的时期,旅行最多,并且是出租车行业最大的。

Understanding driver behavior in on-demand mobility services is crucial for designing efficient and sustainable transport models. Drivers' delivery strategy is well understood, but their search strategy and learning process still lack an empirically validated model. Here we provide a game-theoretic model of driver search strategy and learning dynamics, interpret the collective outcome in a thermodynamic framework, and verify its various implications empirically. We capture driver search strategies in a multi-market oligopoly model, which has a unique Nash equilibrium and is globally asymptotically stable. The equilibrium can therefore be obtained via heuristic learning rules where drivers pursue the incentive gradient or simply imitate others. To help understand city-scale phenomena, we offer a macroscopic view with the laws of thermodynamics. With 870 million trips of over 50k drivers in New York City, we show that the equilibrium well explains the spatiotemporal patterns of driver search behavior, and estimate an empirical constitutive relation. We find that new drivers learn the equilibrium within a year, and those who stay longer learn better. The collective response to new competition is also as predicted. Among empirical studies of driver strategy in on-demand services, our work examines the longest period, the most trips, and is the largest for taxi industry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源