论文标题

使用现代运动传感器数据进行运动和时间分析的数据科学

Data Science for Motion and Time Analysis with Modern Motion Sensor Data

论文作者

Park, Chiwoo, Noh, Sang Do, Srivastava, Anuj

论文摘要

运动和时间分析一直是运营研究中的一个流行研究主题,尤其是用于分析制造和服务运营中的工作表现。它正在作为精益制造业和智能工厂的连续改进工具重新引起注意。本文使用现代运动传感器收集的数据,为工作动作的数据驱动分析和研究与工作速度或执行率的相关性开发了一个框架。过去的分析在很大程度上依赖于涉及耗时的停止观看和视频敲击的手动步骤,然后进行了手动数据分析。尽管现代传感设备已自动化运动数据的收集,但将新数据转化为知识的运动分析在很大程度上欠发达。未解决的技术问题包括:如何从运动传感器数据中提取运动和时间信息,工作动作和执行率是统计建模和比较的,以及动作与速率的统计相关性是什么?在本文中,我们通过定义人类动议和执行率的新数学表示空间以及通过在这些新空间上开发统计工具来开发一个具有运动传感器数据的运动和时间分析的新型数学框架。使用用于制造运动数据的五种用例证明了这项方法论研究。

The motion-and-time analysis has been a popular research topic in operations research, especially for analyzing work performances in manufacturing and service operations. It is regaining attention as continuous improvement tools for lean manufacturing and smart factory. This paper develops a framework for data-driven analysis of work motions and studies their correlations to work speeds or execution rates, using data collected from modern motion sensors. The past analyses largely relied on manual steps involving time-consuming stop-watching and video-taping, followed by manual data analysis. While modern sensing devices have automated the collection of motion data, the motion analytics that transform the new data into knowledge are largely underdeveloped. Unsolved technical questions include: How the motion and time information can be extracted from the motion sensor data, how work motions and execution rates are statistically modeled and compared, and what are the statistical correlations of motions to the rates? In this paper, we develop a novel mathematical framework for motion and time analysis with motion sensor data, by defining new mathematical representation spaces of human motions and execution rates and by developing statistical tools on these new spaces. This methodological research is demonstrated using five use cases applied to manufacturing motion data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源