论文标题

实际上,在自动形态下具有许多轨道有限轨道的nilpotent组

Virtually nilpotent groups with finitely many orbits under automorphisms

论文作者

Bastos, Raimundo, Dantas, Alex C., de Melo, Emerson

论文摘要

让$ g $成为一个小组。 $ g $上$ \ aut(g)$的自然动作的轨道称为$ g $的“自动形态轨道”,$ g $的汽车轨道数量用$ω(g)$表示。令$ g $为几乎是nilpotent群体,以便$ω(g)<\ infty $。我们证明$ g = k \ rtimes h $其中$ h $是扭转子组,$ k $是$ g $的无扭矩的nilpotent radicable特征子组。此外,我们证明$ g^{'} = d \ times \ tor(g^{'})$,其中$ d $是无扭矩的nilpotent radicable特性子组。特别是,如果$ g $的最大正常扭转亚组$τ(g)$是微不足道的,则$ g^{'} $是nilpotent。

Let $G$ be a group. The orbits of the natural action of $\Aut(G)$ on $G$ are called "automorphism orbits" of $G$, and the number of automorphism orbits of $G$ is denoted by $ω(G)$. Let $G$ be a virtually nilpotent group such that $ω(G)< \infty$. We prove that $G = K \rtimes H$ where $H$ is a torsion subgroup and $K$ is a torsion-free nilpotent radicable characteristic subgroup of $G$. Moreover, we prove that $G^{'}= D \times \Tor(G^{'})$ where $D$ is a torsion-free nilpotent radicable characteristic subgroup. In particular, if the maximum normal torsion subgroup $τ(G)$ of $G$ is trivial, then $G^{'}$ is nilpotent.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源