论文标题
验证MG尺度摆的条件机械挤压在量子方案附近
Verification of conditional mechanical squeezing for a mg-scale pendulum near quantum regimes
论文作者
论文摘要
在量子力学中,可以使用测量来制备量子状态。该原理即使适用于宏观对象,这可能使我们能够看到经典的量词过渡。在这里,我们通过连续的线性位置测量和量子状态预测,证明了MG尺度悬浮镜(即摆的质量中心模式)的条件机械挤压。该实验涉及摆在一个失去光腔中的光子相干场相互作用,从而产生光弹簧。 futhermore,腔腔使我们能够通过直接对反射光进行直接照相进行线性位置测量。我们使用基于因果和抗果过滤器结合预测和回顾的理论来实验验证条件挤压。结果,位置和动量的标准偏差分别由位置的零点幅度$ q _ {\ rm zpf} $和89倍的动量$ p _ {\ rm zpf} $的零点振幅给出36倍。与先前的研究相比,尽管机械振荡器的质量大约要大约7个数量级,但达到的挤压水平约为零点运动的5倍。因此,我们的演示是迈向质量尺度足够高以测量重力相互作用的量子控制的第一步。这种量子控制将使用大规模对象的质量中心模式为测试量子力学铺平道路。
In quantum mechanics, measurement can be used to prepare a quantum state. This principle is applicable even for macroscopic objects, which may enable us to see classical-quantum transition. Here, we demonstrate conditional mechanical squeezing of a mg-scale suspended mirror (i.e. the center-of-mass mode of a pendulum) near quantum regimes, through continuous linear position measurement and quantum state prediction. The experiment involved the pendulum interacting with photon coherent fields in a detuned optical cavity, which creates an optical spring. Futhermore, the detuned cavity allows us to perform linear position measurement by direct photo-detection of the reflected light. We experimentally verify the conditional squeezing using the theory combining prediction and retrodiction based on the causal and anti-causal filters. As a result, the standard deviation of position and momentum are respectively given by 36 times the zero-point amplitude of position $q_{\rm zpf}$ and 89 times the zero-point amplitude of momentum $p_{\rm zpf}$. The squeezing level achieved is about 5 times closer to the zero-point motion, despite that the mass of the mechanical oscillator is approximately 7 orders of magnitude greater, compared to the previous study. Thus, our demonstration is the first step towards quantum control for massive objects whose mass-scale is high enough to measure gravitational interactions. Such quantum control will pave the way to test quantum mechanics using the center-of-mass mode of massive objects.