论文标题

LSTM网络用于在线跨网络建议

LSTM Networks for Online Cross-Network Recommendations

论文作者

Perera, Dilruk, Zimmermann, Roger

论文摘要

跨网络建议系统使用来自多个源网络的辅助信息来创建整体用户配置文件并改善目标网络中的建议。但是,我们发现现有的跨网络解决方案有两个主要限制,以降低整体推荐性能。现有的模型(1)无法捕获用户交互中的复杂的非线性关系,并且(2)是为离线设置而设计的,因此没有在线更新,可以在线进行连续的交互,以捕获推荐人环境中的动态。我们提出了一种基于新型的多层长期记忆(LSTM)网络解决方案,以减轻这些问题。所提出的模型包含标准LSTM的三个主要扩展:首先,一种关注门控机制,可捕获长期用户偏好变化。其次,一个高阶相互作用层可以减轻数据稀疏性。第三,随着时间的关注LSTM单元门以捕获用户交互之间的不规则时间间隔。我们使用Twitter和Google Plus的辅助信息来说明解决方案,以改善YouTube上的建议。广泛的实验表明,在准确性,多样性和新颖性方面,提出的模型始终优于最先进的模型。

Cross-network recommender systems use auxiliary information from multiple source networks to create holistic user profiles and improve recommendations in a target network. However, we find two major limitations in existing cross-network solutions that reduce overall recommender performance. Existing models (1) fail to capture complex non-linear relationships in user interactions, and (2) are designed for offline settings hence, not updated online with incoming interactions to capture the dynamics in the recommender environment. We propose a novel multi-layered Long Short-Term Memory (LSTM) network based online solution to mitigate these issues. The proposed model contains three main extensions to the standard LSTM: First, an attention gated mechanism to capture long-term user preference changes. Second, a higher order interaction layer to alleviate data sparsity. Third, time aware LSTM cell gates to capture irregular time intervals between user interactions. We illustrate our solution using auxiliary information from Twitter and Google Plus to improve recommendations on YouTube. Extensive experiments show that the proposed model consistently outperforms state-of-the-art in terms of accuracy, diversity and novelty.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源