论文标题
考虑本地和全球信息传播,以自适应行为进行建模疾病扩散
Modeling disease spreading with adaptive behavior considering local and global information dissemination
论文作者
论文摘要
该研究提出了一个建模框架,以考虑局部观察和全球信息的影响,以在疾病爆发期间以适应性人类行为进行自适应人类行为进行建模框架。一种重要的应用方案是,通勤者可以在观察旅行期间从身体接触的症状和对策中调整其行为,从而改变疾病爆发的轨迹。我们在多重网络设置中介绍了异质的平均场(HMF)方法,以共同模拟接触网络中传染病的传播动力学和观察网络中信息的传播动力学。疾病扩散是使用经典的易感感染感染(SIS)过程来捕获的,而SIS类似过程则模拟了被称为不认识的意识(UAU)的意识的传播。多路复用网络的使用有助于捕获疾病扩散与信息传播之间的相互作用,以及一个人的动态如何影响另一个。理论分析表明,取决于疾病和信息的渗透强度,存在三个潜在的平衡状态。信息传播可能有助于塑造人群中的群疫苗,从而抑制和消除疾病爆发。最后,在现实世界中,使用地铁旅客之间使用接触网络的数值实验阐明了疾病和信息动态,并获得了对传染病风险的运输系统弹性的见解。
The study proposes a modeling framework for investigating the disease dynamics with adaptive human behavior during a disease outbreak, considering the impacts of both local observations and global information. One important application scenario is that commuters may adjust their behavior upon observing the symptoms and countermeasures from their physical contacts during travel, thus altering the trajectories of a disease outbreak. We introduce the heterogeneous mean-field (HMF) approach in a multiplex network setting to jointly model the spreading dynamics of the infectious disease in the contact network and the dissemination dynamics of information in the observation network. The disease spreading is captured using the classic susceptible-infectious-susceptible (SIS) process, while an SIS-alike process models the spread of awareness termed as unaware-aware-unaware (UAU). And the use of multiplex network helps capture the interplay between disease spreading and information dissemination, and how the dynamics of one may affect the other. Theoretical analyses suggest that there are three potential equilibrium states, depending on the percolation strength of diseases and information. The dissemination of information may help shape herd immunity among the population, thus suppressing and eradicating the disease outbreak. Finally, numerical experiments using the contact networks among metro travelers are provided to shed light on the disease and information dynamics in the real-world scenarios and gain insights on the resilience of transportation system against the risk of infectious diseases.