论文标题
控制AB-和AA堆叠双层石墨烯的属性BC $ _ {14} $ n和si $ _ {2} $ C $ _ {14} $
Interlayer interaction controlling the properties of AB- and AA-stacked bilayer graphene-like BC$_{14}$N and Si$_{2}$C$_{14}$
论文作者
论文摘要
我们用Si $ _2 $ C $ _ {14} $和BC $ _ {14} $ n Stoichiichiementry模拟双层石墨烯般的材料,其中层间交互在其中扮演着重要的角色来塑造系统的物理特性。我们发现,由于Si-Si原子的相互作用,在Si $ _2 $ _2 $ _2 $ c $ _ {14} $中的相互作用是令人反感的,而在BC $ _ {14} $ n中,由于AA-和AB堆积的B和N原子,这是有吸引力的。排斥的层间相互作用在Si $ _2 $ c $ _ {14} $中打开了带隙,而BC $ _ {14} $ n中有吸引力的中间层相互作用诱导了一个小的间接带盖或价值传导带重叠。此外,排斥相互作用降低了年轻的模量,而有吸引力的相互作用并不影响年轻的模量。与纯石墨蛋白双层相比,AA-和AB堆栈的应力应变曲线都被抑制。 Si $ _2 $ c $ _ {14} $的光学响应对应用电场非常敏感,并且在低能时发现了光谱的富集。富集归因于$π{\ text - }π^*$ bands之间的带隙开口和增加的能量间距。在bc $ _ {14} $ n中,由于间接频段或$π{\ text - }π^* $ bands的重叠而降低了光谱。最后,由于在si $ _2 $ _2 $ c $ _ {14} $中存在直接频段盖,因此观察到了高的Seebeck系数,而在BC $ _ {14} $ n中并没有增强。
We model bilayer graphene-like materials with Si$_2$C$_{14}$ and BC$_{14}$N stoichiometry, where the interlayer interactions play important roles shaping the physical properties of the systems. We find the interlayer interaction in Si$_2$C$_{14}$ to be repulsive due to the interaction of Si-Si atoms, and in BC$_{14}$N it is attractive due to B and N atoms for both the AA- and the AB-stacking. The repulsive interlayer interaction opens up a bandgap in Si$_2$C$_{14}$ while the attractive interlayer interaction in BC$_{14}$N induces a small indirect bandgap or overlaping of the valence conduction bands. Furthermore, the repulsive interaction decreases the Young modulus while the attractive interaction does not influence the Young modulus much. The stress-strain curves of both the AA- and the AB-stackings are suppressed compared to pure graphine bilayers. The optical response of Si$_2$C$_{14}$ is very sensitive to an applied electric field and an enrichment in the optical spectra is found at low energy. The enrichment is attributed to the bandgap opening and increased energy spacing between the $π{\text -}π^*$ bands. In BC$_{14}$N, the optical spectra are reduced due to the indirect bandgap or the overlapping of the $π{\text -}π^* $ bands. Last, a high Seebeck coefficient is observed due to the presence of a direct bandgap in Si$_2$C$_{14}$, while it is not much enhanced in BC$_{14}$N.