论文标题

三角形$ j $ - $ k $ - $γ$模型中全球相图的全面研究

Comprehensive study of the global phase diagram in the triangular $J$-$K$-$Γ$ model

论文作者

Wang, Shi, Qi, Zhongyuan, Xi, Bin, Wang, Wei, Yu, Shun-Li, Li, Jian-Xin

论文摘要

著名的Kitaev Honeycomb模型提供了一个具有分析性的示例,具有精确的量子自旋液态基态。在实际材料中,还有其他类型的互动,除了Kitaev耦合($ K $),例如Heisenberg($ j $)和对称的偏高($γ$)项,这些交互也可以推广到三角形晶格。在这里,我们使用确切的对角线化,经典的蒙特卡洛和分析方法的组合,对覆盖完整参数区域的三角形晶格的$ j $ - $ k $ - $γ$模型进行了全面研究。在香港极限($γ= 0 $)中,我们发现五个量子相与它们的经典同行非常相似。其中,Stripe-A和双Néel阶段对$γ$项非常强大,尤其是Stripe-A延伸到连接$ K = -1 $的区域,$ K = 1 $,对于$γ<0 $。尽管120美元$^\ Circ $néel阶段也扩展到有限的$γ$,但与以前的经典结果相比,其区域大大减少了。有趣的是,对于无限的$γ$相互作用,铁磁(称为FM-A)相位和条纹-B相不稳定。此外,我们找到了$γ\ ne 0 $的五个新阶段,这些阶段是由量子和经典数值方法详细阐述的。在古典研究中,先前确定为120 $^\ circ $néel阶段的空间的一部分被发现使位于调制条纹阶段。根据$γ$的迹象,FM-A相转移到FM-B($γ> 0 $)和FM-C($γ<0 $)相具有不同的旋转方向的相位,以及Stripe-B相转移到Stripe-C($γ> 0 $)和Stripe-A($γ<0 $)中。由于Heisenberg,KiateV和$γ$相互作用的相互作用,在正$γ$​​点附近,我们发现可能具有旋转激发的连续体的量子自旋液体。

The celebrated Kitaev honeycomb model provides an analytically tractable example with an exact quantum spin liquid ground state. While in real materials, other types of interactions besides the Kitaev coupling ($K$) are present, such as the Heisenberg ($J$) and symmetric off-diagonal ($Γ$) terms, and these interactions can also be generalized to a triangular lattice. Here, we carry out a comprehensive study of the $J$-$K$-$Γ$ model on the triangular lattice covering the full parameters region, using the combination of the exact diagonalization, classical Monte Carlo and analytic methods. In the HK limit ($Γ=0$), we find five quantum phases which are quite similar to their classical counterparts. Among them, the stripe-A and dual Néel phase are robust against the $Γ$ term, in particular the stripe-A extends to the region connecting the $K=-1$ and $K=1$ for $Γ<0$. Though the 120$^\circ$ Néel phase also extends to a finite $Γ$, its region has been largely reduced compared to the previous classical result. Interestingly, the ferromagnetic (dubbed as FM-A) phase and the stripe-B phase are unstable in response to an infinitesimal $Γ$ interaction. Moreover, we find five new phases for $Γ\ne 0$ which are elaborated by both the quantum and classical numerical methods. Part of the space previously identified as 120$^\circ$ Néel phase in the classical study is found to give way to the modulated stripe phase. Depending on the sign of the $Γ$, the FM-A phase transits into the FM-B ($Γ>0$) and FM-C ($Γ<0$) phase with different spin orientations, and the stripe-B phase transits into the stripe-C ($Γ>0$) and stripe-A ($Γ<0$). Around the positive $Γ$ point, due to the interplay of the Heisenberg, Kiatev and $Γ$ interactions, we find a possible quantum spin liquid with a continuum in spin excitations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源