论文标题

高电荷和放电速率的有序大孔电池电极材料的限制

Limitations of Ordered Macroporous Battery Electrode Materials at High Charge and Discharge Rates

论文作者

O'Hanlon, Sally, McNulty, David, Tian, Ruiyuan, Coleman, Jonathan, O'Dwyer, Colm

论文摘要

据信,在电池电极中增加孔隙率对于增加空间以适应体积膨胀,电解质访问所有活性材料非常有用,从而有助于降低C率性能较差,以使较厚的电极和允许使用其他材料进行填充。有序的多孔电极,例如具有巨大齿状的逆蛋白石,已成为模型系统:粘合剂和无导电添加剂,无连接的电气,电源,定义的孔隙率和孔尺寸,厚度,厚度,良好的电解质可湿性以及出人意料的良好的电极性能,并以正常速度的速率在半细胞中良好的电池性能和LI-Battery细胞。我们表明,固有的电子电导率很重要,并且以快速的速率固有电导率最终抑制了电极材料中的任何电荷存储。使用逆蛋白石V2O5in的模型系统,据众所周知,Li电化学的LI电池电池被淹没了,我们表明,超过10 c,电极几乎可以存储几乎没有电荷,但一旦降低至<1c,电极就会完全恢复。我们展示了如何使用X射线衍射,拉曼散射和电子显微镜在静态下修饰IO材料,并且很少或没有反应以较高的速率发生。我们还使用计时计量学来检查速率行为,并将较高速率性能和完全抑制的局限性与IO网络的固有不合格电导率联系起来。数据表明,即使是具有纳米级尺寸的理想化电极,功能性孔隙率和完整的材料互连性,即使在用电解质完全浸泡时,高速率性能也较低,因此从根本上受到限制。虽然添加所谓的功能尺寸降低,孔隙率等对于某些材料可能很有用,但这些潜在的好处显然对锂离子电池中的高速率电极普遍有用。

Adding porosity to battery electrodes is believed to be universally useful for adding space to accommodate volumetric expansion, electrolyte access to all active materials, helping to mitigate poor C-rate performance for thicker electrodes and for allowing infilling with other materials. Ordered porous electrode, such as inverse opals that have macroporosity, have been a model system: binder and conductive additive free, interconnected electrically, defined porosity and pore size with thickness, good electrolyte wettability and surprisingly good electrode performance in half cells and Li-battery cells at normal rates. We show that the intrinsic electronic conductivity is important, and at fast rates the intrinsic conductivity ultimately suppresses any charge storage in electrode materials. Using a model system of inverse opal V2O5in a flooded Li battery three-electrode cell, whose Li electrochemistry is very well understood, we show that beyond 10 C, electrodes can store almost no charge, but completely recover once reduced to < 1C. We show how the IO material is modified under lithiation using X-ray diffraction, Raman scattering and electron microscopy, and that little or no reaction occurs to the material at higher rates. We also use chronoamperometry to examine rate behaviour and link the limitations in high rate performance, and complete capacity suppression, to the intrinsic out-of-plane conductivity of the IO network. The data show that even idealized electrodes with nanoscale dimensions, functional porosity and full material interconnectivity, are fundamentally limited for high rate performance when they are less conductive even when fully soaked with electrolyte. While adding so-called functional size reduction, porosity etc. can be useful for some materials, these potential benefits are clearly not universally useful for high rate electrodes in Li-ion batteries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源