论文标题
多种源适应的判别技术
A Discriminative Technique for Multiple-Source Adaptation
论文作者
论文摘要
我们提出了一种新的判别技术,用于多种源适应,即MSA,问题。与以前依赖于每个源域的密度估计的工作不同,我们的解决方案仅需要有条件的概率,这些概率可以轻松地从源域中的未标记数据中准确估算。我们对我们的新技术进行了详细的分析,包括基于Rényi差异的一般保证,以及当使用条件最大值用于估算属于源域的有条件概率时的学习界限。我们表明,这些保证与使用内核密度估计值相比,与可以为生成溶液得出的那些相比。我们使用现实世界应用的实验进一步表明,我们的新歧视性MSA算法优于先前的生成解决方案以及其他域的适应基线。
We present a new discriminative technique for the multiple-source adaptation, MSA, problem. Unlike previous work, which relies on density estimation for each source domain, our solution only requires conditional probabilities that can easily be accurately estimated from unlabeled data from the source domains. We give a detailed analysis of our new technique, including general guarantees based on Rényi divergences, and learning bounds when conditional Maxent is used for estimating conditional probabilities for a point to belong to a source domain. We show that these guarantees compare favorably to those that can be derived for the generative solution, using kernel density estimation. Our experiments with real-world applications further demonstrate that our new discriminative MSA algorithm outperforms the previous generative solution as well as other domain adaptation baselines.