论文标题
流体动力学可以确定微型威格默导航的最佳途径
Hydrodynamics can Determine the Optimal Route for Microswimmer Navigation
论文作者
论文摘要
与探索良好的问题进行对比,如何引导诸如飞机或月球着陆器之类的宏观剂,以最佳地达到目标,即“最佳的微磁盘”,即寻求Microswimmers的最佳导航策略,仍然无法解决。在这里,我们系统地探讨了这个问题,并表明微翼木的特征流场至关重要地影响所需的导航策略以达到目标最快的目标。所得的最佳轨迹可以具有显着且非直觉的形状,这与干燥的活性颗粒或运动型宏观者的形状不同。我们的结果提供了对流体动力学和微观最佳导航作用的一般见解,并表明微生物在战略性地控制其与遥远墙壁的距离时可能具有生存优势。特别是,当出现波动时,选择适当尊重水力动态的最佳策略可以将达到目标的时间减半,而Microswimmers直接朝向目标。
Contrasting the well explored problem on how to steer a macroscopic agent like an airplane or a moon lander to optimally reach a target, "optimal microswimming", i.e. the quest for the optimal navigation strategy for microswimmers, remains unsolved. Here, we systematically explore this problem and show that the characteristic flow field of microswimmers crucially influences the required navigation strategy to reach a target fastest. The resulting optimal trajectories can have remarkable and non-intuitive shapes, which qualitatively differ from those of dry active particles or motile macroagents. Our results provide generic insights into the role of hydrodynamics and fluctuations on optimal navigation at the microscale and suggest that microorganisms might have survival advantages when strategically controlling their distance to remote walls. In particular, when fluctuations are present, choosing the optimal strategy, which appropriately respects hydrdynamics, can halve the time to reach the target compared to cases microswimmers head straight towards it.