论文标题
基于细胞的人群疏散的LED腕带:一种自适应出口选择指导系统体系结构
LED wristbands for Cell-based Crowd Evacuation: an Adaptive Exit-choice Guidance System Architecture
论文作者
论文摘要
基于细胞的人群疏散系统提供了有利于协调组动态的自适应或静态出口选择指示,从而改善了疏散时间和安全性。尽管通过假设理想的沟通和定位基础架构为建模其控制逻辑做出了巨大的努力,但在很大程度上忽略了架构维度和行人定位不确定性的影响。在我们先前的研究中,提出了基于细胞的人群疏散系统(CELLEVAC),该系统将出口门动态分配给基于细胞的行人定位基础设施的行人。该系统通过基于颜色的指示和基于优化的离散选择模型构建的控制逻辑模块提供了最佳的出口选择指示。在这里,我们调查了如何使用位置感知的技术和可穿戴设备来实现Cellevac的现实部署。我们考虑了模拟的真实疏散场景(马德里竞技场),并为CELLEVAC提出了一个系统体系结构,其中包括:控制器节点,一个无线电控制的LED腕带子系统和配备有效射频射频标识(RFID)设备的单元网络网络。这些子系统协调以提供控制,显示和定位功能。我们定量研究疏散时间和安全性对定位系统不确定性的敏感性。结果表明,CELLEVAC在定位不确定性范围内运行。进一步的分析表明,通过模拟优化过程对控制逻辑模块进行重新编程,模拟定位系统的预期不确定性水平,从而在定位系统差的情况下改善了CELLEVAC的性能。
Cell-based crowd evacuation systems provide adaptive or static exit-choice indications that favor a coordinated group dynamic, improving evacuation time and safety. While a great effort has been made to modeling its control logic by assuming an ideal communication and positioning infrastructure, the architectural dimension and the influence of pedestrian positioning uncertainty have been largely overlooked. In our previous research, a Cell-based crowd evacuation system (CellEVAC) was proposed that dynamically allocates exit gates to pedestrians in a cell-based pedestrian positioning infrastructure. This system provides optimal exit-choice indications through color-based indications and a control logic module built upon an optimized discrete-choice model. Here, we investigate how location-aware technologies and wearable devices can be used for a realistic deployment of CellEVAC. We consider a simulated real evacuation scenario (Madrid Arena) and propose a system architecture for CellEVAC that includes: a controller node, a radio-controlled LED wristband subsystem, and a cell-node network equipped with active Radio Frequency Identification (RFID) devices. These subsystems coordinate to provide control, display and positioning capabilities. We quantitatively study the sensitivity of evacuation time and safety to uncertainty in the positioning system. Results showed that CellEVAC was operational within a limited range of positioning uncertainty. Further analyses revealed that reprogramming the control logic module through a simulation-optimization process, simulating the positioning system's expected uncertainty level, improved the CellEVAC performance in scenarios with poor positioning systems.