论文标题
牛顿系列扩展的玻体操作员功能
Newton series expansion of bosonic operator functions
论文作者
论文摘要
我们展示了如何自然地从有限差分计算得出的骨数量运算符功能的串联扩展。该方案采用牛顿系列而不是泰勒系列序列,从差分微积分中已知,并且在泰勒膨胀失败的情况下也起作用。对于数字运算符的函数,这种扩展会自动正常排序。该方案适用于旋转的荷斯坦 - 普罗里马科夫(Holstein-Primakoff)代表,并产生了具有有限术语数量的精确串联扩展,此外,还允许对旋转算子进行系统的扩展,以尊重整个希尔伯特(Hilbert)空间中截断的部分内的旋转换向关系。此外,牛顿系列的扩展强烈促进了相对于连贯状态的期望值的计算。作为第三个例子,我们表明,在光子或电子计数的背景下产生的阶乘时刻和阶乘累积是牛顿系列扩展的自然结果。最后,我们通过确定相应的积分转换,阐明了正常排序,泰勒和牛顿系列之间的连接,这与梅林变换有关。
We show how series expansions of functions of bosonic number operators are naturally derived from finite-difference calculus. The scheme employs Newton series rather than Taylor series known from differential calculus, and also works in cases where the Taylor expansion fails. For a function of number operators, such an expansion is automatically normal ordered. Applied to the Holstein-Primakoff representation of spins, the scheme yields an exact series expansion with a finite number of terms and, in addition, allows for a systematic expansion of the spin operators that respects the spin commutation relations within a truncated part of the full Hilbert space. Furthermore, the Newton series expansion strongly facilitates the calculation of expectation values with respect to coherent states. As a third example, we show that factorial moments and factorial cumulants arising in the context of photon or electron counting are a natural consequence of Newton series expansions. Finally, we elucidate the connection between normal ordering, Taylor and Newton series by determining a corresponding integral transformation, which is related to the Mellin transform.