论文标题
从微不足道到拓扑paramagnet:$ \ mathbb {z} _2 $和$ \ mathbb {z} _2^3 $ symmetries的情况
From trivial to topological paramagnets: The case of $\mathbb{Z}_2$ and $\mathbb{Z}_2^3$ symmetries in two dimensions
论文作者
论文摘要
使用量子蒙特卡洛模拟,我们绘制了哈密顿人的相图,在两种尺度的$ \ mathbb {z} _2 $和$ \ mathbb {z} _2 $和$ \ mathbb {z} _2^3 $ symmetries中,在两个尺寸上。在所有情况下,我们都会发现,微不足道和拓扑阶段被自发损坏的中间相分开。根据模型,我们在三角形晶格上确定了各种磁性顺序,包括铁磁性,$ \ sqrt {3} \ times \ times \ sqrt {3} $ orders和条纹顺序(均一和不稳定)。临界特性是通过有限尺寸的缩放分析来确定的。讨论了有关相变本质的可能方案。
Using quantum Monte Carlo simulations, we map out the phase diagram of Hamiltonians interpolating between trivial and non-trivial bosonic symmetry-protected topological phases, protected by $\mathbb{Z}_2$ and $\mathbb{Z}_2^3$ symmetries, in two dimensions. In all cases, we find that the trivial and the topological phases are separated by an intermediate phase in which the protecting symmetry is spontaneously broken. Depending on the model, we identify a variety of magnetic orders on the triangular lattice, including ferromagnetism, $\sqrt{3}\times\sqrt{3}$ order, and stripe orders (both commensurate and incommensurate). Critical properties are determined through a finite-size scaling analysis. Possible scenarios regarding the nature of the phase transitions are discussed.