论文标题

通过深入学习的密度图,测量湍流气体的光谱指数

Measuring the spectral index of turbulent gas with deep learning from projected density maps

论文作者

Trevisan, Piero, Pasquato, Mario, Ballone, Alessandro, Mapelli, Michela

论文摘要

湍流在分子云中的恒星形成中起关键作用,影响星团原始特性。随着当今的对象对我们对初始条件的理解取决于我们对湍流的更好限制可能会导致银河考古学,星形集群动力学和恒星形成的意外收获。从观察上讲,限制湍流气体的光谱指数通常涉及速度图的计算光谱。在这里,我们建议可以通过深度学习直接从色谱柱密度图(可能是通过灰尘发射/吸收获得)直接推断出有关光谱指数的信息。我们使用Hydro-Simulation Code Ramses生成了大量自适应网状细化湍流气体模拟的模拟密度图。我们在所得图像上训练卷积神经网络(CNN),以预测湍流指数,优化验证中的超参数和测试。我们采用的CNN模型在其保持量的预测中达到了0.024的平均平方误差,在3到4.5之间的基础频谱索引上。我们还通过将模型应用于更改的保留集图像以及通过在不同分辨率运行模拟获得的图像来执行鲁棒性测试。模拟密度图的这种初步结果鼓励了实际数据的进一步发展,在这些数据中,观察性偏见和其他问题需要考虑到。

Turbulence plays a key role in star formation in molecular clouds, affecting star cluster primordial properties. As modelling present-day objects hinges on our understanding of their initial conditions, better constraints on turbulence can result in windfalls in Galactic archaeology, star cluster dynamics and star formation. Observationally, constraining the spectral index of turbulent gas usually involves computing spectra from velocity maps. Here we suggest that information on the spectral index might be directly inferred from column density maps (possibly obtained by dust emission/absorption) through deep learning. We generate mock density maps from a large set of adaptive mesh refinement turbulent gas simulations using the hydro-simulation code RAMSES. We train a convolutional neural network (CNN) on the resulting images to predict the turbulence index, optimize hyper-parameters in validation and test on a holdout set. Our adopted CNN model achieves a mean squared error of 0.024 in its predictions on our holdout set, over underlying spectral indexes ranging from 3 to 4.5. We also perform robustness tests by applying our model to altered holdout set images, and to images obtained by running simulations at different resolutions. This preliminary result on simulated density maps encourages further developments on real data, where observational biases and other issues need to be taken into account.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源