论文标题
在嘈杂的环境中,超分辨率的量子限制
Quantum limits of superresolution in a noisy environment
论文作者
论文摘要
我们分析了在嘈杂的环境中解决两个相同来源的最终量子限制。我们证明,在存在引起虚假激发的噪声的情况下,例如热噪声,量化对象分离的任意量子状态的量子渔民信息量化了分辨率,随着分离的分离为零,始终会收敛至零。嘈杂的情况与无嘈杂的情况形成鲜明对比,在各种情况下,在较小距离的较小距离中,它被证明是非零的,从而揭示了超分辨率。此外,我们表明对任意测量的虚假激发(例如黑暗计数)也使经典的渔民在分离为零时的测量方法的经典信息。最后,通过使用有限的空间模式多路复用的量子和经典的渔民信息来定量研究了解决两个相同的热源的实际情况,可以定量研究,这表明噪声的量对噪声系统中的分辨率有限制。
We analyze the ultimate quantum limit of resolving two identical sources in a noisy environment. We prove that in the presence of noise causing false excitation, such as thermal noise, the quantum Fisher information of arbitrary quantum states for the separation of the objects, which quantifies the resolution, always converges to zero as the separation goes to zero. Noisy cases contrast with a noiseless case where it has been shown to be nonzero for a small distance in various circumstances, revealing the superresolution. In addition, we show that false excitation on an arbitrary measurement, such as dark counts, also makes the classical Fisher information of the measurement approach to zero as the separation goes to zero. Finally, a practically relevant situation resolving two identical thermal sources, is quantitatively investigated by using the quantum and classical Fisher information of finite spatial mode multiplexing, showing that the amount of noise poses a limit on the resolution in a noisy system.