论文标题
SNE-ROADSEG:将表面正常信息纳入语义分割,以进行精确的自由空间检测
SNE-RoadSeg: Incorporating Surface Normal Information into Semantic Segmentation for Accurate Freespace Detection
论文作者
论文摘要
自动驾驶汽车的视觉感知的重要组成部分是自动驾驶汽车的重要组成部分。最近在数据融合卷积神经网络(CNN)中所做的努力已大大改善了语义驾驶场景细分。可以假设自由空间为地面,在该平面上,点具有相似的表面正态。因此,在本文中,我们首先引入了一个名为“表面正常估计器(SNE)”的新型模块,该模块可以以高精度和效率从密集的深度/差异图像中推断出表面正常信息。此外,我们提出了一个被称为RoadSeg的数据融合CNN体系结构,该体系结构可以从RGB图像中提取和融合特征,并融合了推断的表面正常信息,以进行准确的自由空间检测。出于研究目的,我们发布了一个大规模的合成释放空间检测数据集,该数据集名为“现成驱动器(R2D)Road数据集”,该数据集收集在不同的照明和天气条件下。实验结果表明,我们提出的SNE模块可以使所有最先进的CNN用于自由空间检测,并且我们的SNE-RoadSeg在不同数据集中实现了最佳的整体性能。
Freespace detection is an essential component of visual perception for self-driving cars. The recent efforts made in data-fusion convolutional neural networks (CNNs) have significantly improved semantic driving scene segmentation. Freespace can be hypothesized as a ground plane, on which the points have similar surface normals. Hence, in this paper, we first introduce a novel module, named surface normal estimator (SNE), which can infer surface normal information from dense depth/disparity images with high accuracy and efficiency. Furthermore, we propose a data-fusion CNN architecture, referred to as RoadSeg, which can extract and fuse features from both RGB images and the inferred surface normal information for accurate freespace detection. For research purposes, we publish a large-scale synthetic freespace detection dataset, named Ready-to-Drive (R2D) road dataset, collected under different illumination and weather conditions. The experimental results demonstrate that our proposed SNE module can benefit all the state-of-the-art CNNs for freespace detection, and our SNE-RoadSeg achieves the best overall performance among different datasets.