论文标题

在$ 3 $ - 均匀的超图中避免了长度四个周期

On $3$-uniform hypergraphs avoiding a cycle of length four

论文作者

Ergemlidze, Beka, Győri, Ervin, Methuku, Abhishek, Salia, Nika, Tompkins, Casey

论文摘要

在本说明中,我们表明,$ 3 $ - 均匀的超图中的最大边缘数量为berge周期,最多为$(1+o(1))\ frac {n^{3/2}} {\ sqrt {10}} $。这改善了Győri和Lemons以及Füredi和Özkahya的早期估计。

In this note we show that the maximum number of edges in a $3$-uniform hypergraph without a Berge cycle of length four is at most $(1+o(1))\frac{n^{3/2}}{\sqrt{10}}$. This improves earlier estimates by Győri and Lemons and by Füredi and Özkahya.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源