论文标题

Majorana中微子的平等和CP操作

Parity and CP operations for Majorana neutrinos

论文作者

Fujikawa, Kazuo

论文摘要

费米昂字段$ψ(x)$的均衡转换定律通常由“ $γ^{0} $ - 均等”定义。 “ $iγ^{0} $ - 均等” $ψ^{p}(t, - \ vec {x})=iγ^{0}ψ(t, - \ vec {x})$是Majoraana fermion所需的。这两个平价法的兼容性问题在违反一般类Majorana费米子的理论中出现了。在标准模型扩展中由手性中微子构建的主要中微子的情况下,Majorana中微子可以以CP对称性为特征,尽管C和P分别损坏。然后表明,在起始费用的级别上,均等操作的任何一种选择,即$γ^{0} $或$iγ^{0} $,都会引起Weinberg的中微子的一致性和物理上等效的描述,均引起了Weinberg的中微子的模型和一般的Seesaw模型。这种等价的机制是,由手性中微子构成的主要中微子,该中微子满足经典的主要条件$ψ(x)= c \ C \ overline {ψ(x)}^{t} $,允许相位自由$ $ $ $ $ $ $ $ψ(x)= e^{e^{iα}nν_{iα}ν_{l}nν_{x) e^{ - iα} c \ edline {ν_{ν_{l}(x)}^{t} $,带有$α= 0 \ {\ rm或} \ rm或} \π/4 $,该阶段来自阶段来自不同平均定义的$ν_{l}(x)$的不同定义,并确保了一致的symsents insmerts cal $ cal cal cal cal cal cal(cp) cp})ψ(x)({\ cal cp})^{\ dagger} = \ pmiγ^{0}ψ(t, - - \ vec {x})$。

The parity transformation law of the fermion field $ψ(x)$ is usually defined by the "$γ^{0}$-parity" $ψ^{p}(t,-\vec{x}) = γ^{0}ψ(t,-\vec{x})$ with eigenvalues $\pm 1$, while the "$iγ^{0}$-parity" $ψ^{p}(t,-\vec{x})=iγ^{0}ψ(t,-\vec{x})$ is required for the Majorana fermion. The compatibility issues of these two parity laws arise in generic fermion number violating theories where a general class of Majorana fermions appear. In the case of Majorana neutrinos constructed from chiral neutrinos in an extension of the Standard Model, the Majorana neutrinos can be characterized by CP symmetry although C and P are separately broken. It is then shown that either choice of the parity operation, $γ^{0}$ or $iγ^{0}$, in the level of the starting fermions gives rise to the consistent and physically equivalent descriptions of emergent Majorana neutrinos both for Weinberg's model of neutrinos and for a general class of seesaw models. The mechanism of this equivalence is that the Majorana neutrino constructed from a chiral neutrino, which satisfies the classical Majorana condition $ψ(x)=C\overline{ψ(x)}^{T}$, allows the phase freedom $ψ(x)=e^{iα}ν_{L}(x) + e^{-iα}C\overline{ν_{L}(x)}^{T}$ with $α=0\ {\rm or}\ π/4$ that accounts for the phase coming from the different definitions of parity for $ν_{L}(x)$ and ensures the consistent definitions of CP symmetry $({\cal CP})ψ(x)({\cal CP})^{\dagger}= \pm iγ^{0}ψ(t,-\vec{x})$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源