论文标题

在硅异缝太阳能电池中的带尾状态的成像

Imaging of bandtail states in silicon heterojunction solar cells

论文作者

Teferi, M. Y., Malissa, H., Morales-Vilches, A. B., Trinh, C. T., Korte, L., Stannowski, B., Williams, C. C., Boehme, C., Lips, K.

论文摘要

硅杂结(SHJ)太阳能电池代表了一种有希望的技术方法,用于提高光伏效率和较低的制造成本。虽然过去已经对SHJ太阳能电池的装置物理学进行了广泛的研究,但纳米镜电子过程(例如电荷载体产生,重组,捕获和渗透)等纳米镜电子过程的影响尚未完全了解SHJ设备的性能。我们报告了原子量表在最新的A-SI:H/C-SI异质结太阳能电池在环境工作条件下的研究,揭示了电子SHJ界面过程的深刻复杂性。 Using conduction atomic force microscopy (cAFM), it is shown that the macroscopic current-voltage characteristics of SHJ solar cells is governed by the average of local nanometer-sized percolation pathways associated with bandtail states of the doped a-Si:H selective contact leading to above bandgap open circuit voltages ($V_{\mbox{OC}}$) as high as 1.2 V ($ v _ {\ mbox {oc}}> e e e _ {\ mbox {gap}}}^{\ mbox {si}} $)。这并不违反光伏设备物理,而是纳米尺度电荷渗透途径的性质,该途径源自陷阱辅助隧道,导致暗泄漏电流。我们表明,局部光伏的广泛分布是在A-SI:H悬挂键缺陷处随机捕获电荷的直接结果,这会导致局部电位的强烈波动,并诱导深色电流的随机电报噪声。

Silicon heterojunction (SHJ) solar cells represent a promising technological approach towards higher photovoltaics efficiencies and lower fabrication cost. While the device physics of SHJ solar cells have been studied extensively in the past, the ways in which nanoscopic electronic processes such as charge-carrier generation, recombination, trapping, and percolation affect SHJ device properties macroscopically have yet to be fully understood. We report the study of atomic scale current percolation at state-of-the-art a-Si:H/c-Si heterojunction solar cells under ambient operating conditions, revealing the profound complexity of electronic SHJ interface processes. Using conduction atomic force microscopy (cAFM), it is shown that the macroscopic current-voltage characteristics of SHJ solar cells is governed by the average of local nanometer-sized percolation pathways associated with bandtail states of the doped a-Si:H selective contact leading to above bandgap open circuit voltages ($V_{\mbox{OC}}$) as high as 1.2 V ($V_{\mbox{OC}}>e E_{\mbox{gap}}^{\mbox{Si}}$). This is not in violation of photovoltaic device physics but a consequence of the nature of nanometer-scale charge percolation pathways which originate from trap-assisted tunneling causing dark leakage current. We show that the broad distribution of local photovoltage is a direct consequence of randomly trapped charges at a-Si:H dangling bond defects which lead to strong local potential fluctuations and induce random telegraph noise of the dark current.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源