论文标题
较高属的磁化riemann表面和半弹药水平的ETA商
Magnetized Riemann Surface of Higher Genus and Eta Quotients of Semiprime Level
论文作者
论文摘要
我们研究了较高属的磁化riemann表面上的狄拉克操作员的零模式溶液。在本文中,我们将较高属的Riemann表面定义为Poincar $ \ acute {\ text {e}} $上半平面的商的商,尤其是$γ_{0}(n)$。我们提出了一种构建尖端形式基础的方法,因为零模式解决方案应为牙尖。为了确认我们的方法,我们选择了半弹药级别的一致性亚组,并将演示显示给一些较低的权重。此外,我们讨论Yukawa耦合和矩阵正则化作为应用。
We study the zero mode solutions of a Dirac operator on a magnetized Riemann surface of higher genus. In this paper, we define a Riemann surface of higher genus as a quotient manifold of the Poincar$\acute{\text{e}}$ upper half-plane by a congruence subgroup, especially $Γ_{0}(N)$. We present a method to construct basis of cusp forms since the zero mode solutions should be cusp forms. To confirm our method, we select a congruence subgroup of semiprime level and show the demonstration to some lower weights. In addition, we discuss Yukawa couplings and matrix regularization as applications.