论文标题
无限的彩票,旋转器和超旧现象的适用性
Infinite lotteries, spinners, and the applicability of hyperreals
论文作者
论文摘要
我们分析了对普鲁斯,伊斯瓦兰,帕克和威廉姆森表达的超现实概率使用的最新批评。我们表明,可以通过在Kanovei-Shelah模型或饱和模型中工作来避免所谓的超新领域的任意性。我们认为,对超现实概率的某些异议是由有利于阿基米德模型的隐藏偏见引起的。我们讨论了与无限量的无传输场相对于无传输场的优势。在第二部分中,我们将通过普鲁斯分析两个不确定的定理,并表明它们取决于寄生的外部超现实价值措施,而内部高铁措施的措施却不不确定。
We analyze recent criticisms of the use of hyperreal probabilities as expressed by Pruss, Easwaran, Parker, and Williamson. We show that the alleged arbitrariness of hyperreal fields can be avoided by working in the Kanovei-Shelah model or in saturated models. We argue that some of the objections to hyperreal probabilities arise from hidden biases that favor Archimedean models. We discuss the advantage of the hyperreals over transferless fields with infinitesimals. In the second part we will analyze two underdetermination theorems by Pruss and show that they hinge upon parasitic external hyperreal-valued measures, whereas internal hyperfinite measures are not underdetermined.