论文标题

通过基准分析对联邦人重新识别的绩效优化

Performance Optimization for Federated Person Re-identification via Benchmark Analysis

论文作者

Zhuang, Weiming, Wen, Yonggang, Zhang, Xuesen, Gan, Xin, Yin, Daiying, Zhou, Dongzhan, Zhang, Shuai, Yi, Shuai

论文摘要

联合学习是一种保护隐私的机器学习技术,它可以在分散的客户端学习共享模型。它可以减轻个人重新识别的隐私问题,这是一项重要的计算机视觉任务。在这项工作中,我们在现实情况下实施了联盟学习对人的重新认同(FEDREID),并优化其受统计异质性影响的性能。我们首先构建了一个新的基准测试,以调查Fedreid的性能。该基准由(1)九个数据集组成,这些数据集具有来自不同领域的不同体积,以模拟现实中的异质情况,(2)两个联合场景,以及(3)增强的FEDRITHM FEDRITHM。基准分析表明,以联合按数据的场景为代表的客户端边缘云架构的性能比FedReid中的客户服务器架构更好。它还揭示了在现实世界中Fedreid的瓶颈,包括由模型聚合中的重量不平衡引起的大型数据集的性能和融合挑战。然后,我们提出了两种优化方法:(1)为了解决不平衡的权重问题,我们提出了一种新方法,根据每个训练回合中客户端的模型变化的规模动态更改权重; (2)为了促进融合,我们采用知识蒸馏来完善服务器模型,并使用公共数据集中的客户端模型生成的知识。实验结果表明,我们的策略可以在所有数据集上获得更好的融合。我们认为,我们的工作将激发社区进一步探索在现实世界中更多计算机视觉任务的联合学习的实施。

Federated learning is a privacy-preserving machine learning technique that learns a shared model across decentralized clients. It can alleviate privacy concerns of personal re-identification, an important computer vision task. In this work, we implement federated learning to person re-identification (FedReID) and optimize its performance affected by statistical heterogeneity in the real-world scenario. We first construct a new benchmark to investigate the performance of FedReID. This benchmark consists of (1) nine datasets with different volumes sourced from different domains to simulate the heterogeneous situation in reality, (2) two federated scenarios, and (3) an enhanced federated algorithm for FedReID. The benchmark analysis shows that the client-edge-cloud architecture, represented by the federated-by-dataset scenario, has better performance than client-server architecture in FedReID. It also reveals the bottlenecks of FedReID under the real-world scenario, including poor performance of large datasets caused by unbalanced weights in model aggregation and challenges in convergence. Then we propose two optimization methods: (1) To address the unbalanced weight problem, we propose a new method to dynamically change the weights according to the scale of model changes in clients in each training round; (2) To facilitate convergence, we adopt knowledge distillation to refine the server model with knowledge generated from client models on a public dataset. Experiment results demonstrate that our strategies can achieve much better convergence with superior performance on all datasets. We believe that our work will inspire the community to further explore the implementation of federated learning on more computer vision tasks in real-world scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源