论文标题
非交通派生的模量prestacks
Non-commutative derived moduli prestacks
论文作者
论文摘要
我们引入了一种在差异分级的联想代数上的衍生模量函子的形式主义,该代数导致派生模量堆栈的非交通性增强,并自然会产生诸如Hall代数等结构。下降论证在非共同上下文中不可用,因此我们建立了构建各种地图集的新方法。形式主义允许在伴侣论文中发展的双核和双泊松结构的理论发展。
We introduce a formalism for derived moduli functors on differential graded associative algebras, which leads to non-commutative enhancements of derived moduli stacks and naturally gives rise to structures such as Hall algebras. Descent arguments are not available in the non-commutative context, so we establish new methods for constructing various kinds of atlases. The formalism permits the development of the theory of shifted bi-symplectic and shifted double Poisson structures in the companion paper.