论文标题

汉密尔顿毫无疑问

Hamiltonian no-torsion

论文作者

Atallah, Marcelo S., Shelukhin, Egor

论文摘要

2002年,波特罗维奇(Polterovich)明显地确定,在封闭的非球形符号歧管上,有限秩序的哈密顿式差异性(我们称为汉密尔顿扭转)实际上必须很琐碎。在本文中,我们证明了第一个较高维的哈密顿无反应定理,超过了符合性的非球形案例。首先,我们表明封闭的syplectic calabi-yau和负单调式歧管不接受汉密尔顿扭转。超出了拓扑约束,我们证明,每个封闭的正元单调歧管$(m,ω)$承认汉密尔顿扭转在几何上都被霍明型球体所吸引,每$ω$ compotiable几乎是复杂的结构,部分地回答了麦克duff-salamon的问题。这提供了许多额外的无扭力结果,并且由于必然会产生单调的汉密尔顿$ s^1 $ manifolds的几何不释放性,这是与2009年麦克杜夫(McDuff)的著名结果密切相关的。 $ k \ geq 2,$以及紧凑型谎言组的$。最后,对于承认哈密顿扭转的单调互合歧管,我们证明了纽曼定理在哈密顿群体上几个自然规范的有限转化组的类似物:这些亚组不能包含在该身份的任意小社区中。我们的论点依赖于通用的莫尔斯 - 摩托方法,以及量子steenrod的力量和史密斯理论中的过滤浮子同源性。

In 2002 Polterovich has notably established that on closed aspherical symplectic manifolds, Hamiltonian diffeomorphisms of finite order, which we call Hamiltonian torsion, must in fact be trivial. In this paper we prove the first higher-dimensional Hamiltonian no-torsion theorems beyond the symplectically aspherical case. We start by showing that closed symplectic Calabi-Yau and negative monotone symplectic manifolds do not admit Hamiltonian torsion. Going still beyond topological constraints, we prove that every closed positive monotone symplectic manifold $(M,ω)$ admitting Hamiltonian torsion is geometrically uniruled by holomorphic spheres for every $ω$-compatible almost complex structure, partially answering a question of McDuff-Salamon. This provides many additional no-torsion results, and as a corollary yields the geometric uniruledness of monotone Hamiltonian $S^1$-manifolds, a fact closely related to a celebrated result of McDuff from 2009. Moreover, the non-existence of Hamiltonian torsion implies the triviality of Hamiltonian actions of lattices like $SL(k,\mathbb{Z})$ for $k \geq 2,$ as well as those of compact Lie groups. Finally, for monotone symplectic manifolds admitting Hamiltonian torsion, we prove an analogue of Newman's theorem on finite transformation groups for several natural norms on the Hamiltonian group: such subgroups cannot be contained in arbitrarily small neighborhoods of the identity. Our arguments rely on generalized Morse-Bott methods, as well as on quantum Steenrod powers and Smith theory in filtered Floer homology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源