论文标题

测量驱动的安全性模拟攻击的安全性分析

Measurement-driven Security Analysis of Imperceptible Impersonation Attacks

论文作者

Li, Shasha, Khalil, Karim, Panda, Rameswar, Song, Chengyu, Krishnamurthy, Srikanth V., Roy-Chowdhury, Amit K., Swami, Ananthram

论文摘要

物联网(IoT)的出现在网络和物理空间的交集中带来了新的安全挑战。一个典型的例子是在物联网系统中基于面部识别(FR)访问控制的脆弱性。虽然先前的研究表明,基于深层的神经网络(DNN)的FR系统(FRS)可能容易受到不可察觉的冒充攻击的影响,但在广泛的场景中,此类攻击的效力尚未得到彻底研究。在本文中,我们介绍了使用大型数据集对基于DNN的FR系统的可剥削性进行的首次系统,广泛的测量研究。我们发现,任意攻击者模仿任意目标的任意假冒攻击,如果不易于识别是辅助目标,就很难。具体而言,我们表明诸如肤色,性别和年龄之类的因素会影响对特定目标受害者进行攻击的能力。我们还研究了构建通用攻击的可行性,这些攻击对攻击者面对的不同姿势或观点都有牢固。我们的结果表明,从攻击者的角度来看,找到普遍的扰动是一个更困难的问题。最后,我们发现扰动的图像在不同的DNN模型上并不能很好地推广。这表明安全对策可以大大降低基于DNN的FR系统的可利用性。

The emergence of Internet of Things (IoT) brings about new security challenges at the intersection of cyber and physical spaces. One prime example is the vulnerability of Face Recognition (FR) based access control in IoT systems. While previous research has shown that Deep Neural Network(DNN)-based FR systems (FRS) are potentially susceptible to imperceptible impersonation attacks, the potency of such attacks in a wide set of scenarios has not been thoroughly investigated. In this paper, we present the first systematic, wide-ranging measurement study of the exploitability of DNN-based FR systems using a large scale dataset. We find that arbitrary impersonation attacks, wherein an arbitrary attacker impersonates an arbitrary target, are hard if imperceptibility is an auxiliary goal. Specifically, we show that factors such as skin color, gender, and age, impact the ability to carry out an attack on a specific target victim, to different extents. We also study the feasibility of constructing universal attacks that are robust to different poses or views of the attacker's face. Our results show that finding a universal perturbation is a much harder problem from the attacker's perspective. Finally, we find that the perturbed images do not generalize well across different DNN models. This suggests security countermeasures that can dramatically reduce the exploitability of DNN-based FR systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源