论文标题

减少一类资源分配问题

On a reduction for a class of resource allocation problems

论文作者

Uiterkamp, Martijn H. H. Schoot, Gerards, Marco E. T., Hurink, Johann L.

论文摘要

在资源分配问题(RAP)中,目标是将给定数量的资源分为一组活动,同时最大程度地减少此分配的成本,并可能满足对活动子集的分配的约束。大多数用于RAP及其扩展的解决方案方法都使每个活动都具有其自身的成本功能。但是,在许多应用中,每个活动的目标函数的结构通常相同,而成本函数之间的差异在于不同的参数选择,例如,例如乘法因子。在本文中,我们介绍了一类新的目标功能,该功能捕获了研究应用程序中发生的大多数目标。这些目标的特征是成本函数的共享结构,具体取决于两个输入参数。我们表明,鉴于两个输入参数,存在对RAP的解决方案,对于共享结构的任何选择都是最佳选择的。结果,这个问题减少了二次说唱,因此可​​以提供大量的解决方案方法和后一种问题的算法。我们显示了还原结果对几种应用的影响,尤其是我们改善了最著名的最差案例复杂性,船舶路由和处理器计划中两个重要问题的界限从$ O(n^2)$到$ o(n \ log n \ log n)$。

In the resource allocation problem (RAP), the goal is to divide a given amount of resource over a set of activities while minimizing the cost of this allocation and possibly satisfying constraints on allocations to subsets of the activities. Most solution approaches for the RAP and its extensions allow each activity to have its own cost function. However, in many applications, often the structure of the objective function is the same for each activity and the difference between the cost functions lies in different parameter choices such as, e.g., the multiplicative factors. In this article, we introduce a new class of objective functions that captures the majority of the objectives occurring in studied applications. These objectives are characterized by a shared structure of the cost function depending on two input parameters. We show that, given the two input parameters, there exists a solution to the RAP that is optimal for any choice of the shared structure. As a consequence, this problem reduces to the quadratic RAP, making available the vast amount of solution approaches and algorithms for the latter problem. We show the impact of our reduction result on several applications and, in particular, we improve the best known worst-case complexity bound of two important problems in vessel routing and processor scheduling from $O(n^2)$ to $O(n \log n)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源