论文标题
基于疏水性相互作用的机制触发SARS COV 2尖峰和血管紧张素转换酶2之间的对接
A hydrophobic-interaction-based mechanism trigger docking between the SARS CoV 2 spike and angiotensin-converting enzyme 2
论文作者
论文摘要
最近的一项实验研究发现,细胞受体人血管紧张素转化酶2(ACE2)和受体结合结构域(RBD)在新型急性急性呼吸综合征2(SARS-COV-2)中的尖峰蛋白中的结合亲和力比原始急性尖锐尖锐的尖锐尖锐尖锐抗菌(SARS-COV-2)的结合亲和力高于原始急性尖锐尖锐尖锐毒素。但是,SARS-COV-2 RBD的主链结构与SARS-COV RBD的主链结构几乎相同。理解负责SARS-COV-2 S和ACE2之间出色亲和力的物理机制是开发阻滞剂,疫苗和针对冠状病毒疾病2019(COVID-19)大流行的“紧急挑战”。考虑到疏水相互作用,水合壳,表面张力以及水分子的屏蔽作用的机制,本研究揭示了一种基于疏水性相互作用的机制,通过这种机制,SARS-COV-2 S和ACE2在水性环境中结合在一起。发现SARS-COV-2 S与ACE2蛋白之间的疏水相互作用明显大于SARS-COV S和ACE2之间的疏水相互作用。在停靠地点,发现SARS-COV-2 S的亲水侧链的疏水部分与SARS-COV-2 S和ACE2之间的疏水相互作用有关。我们提出了一种通过突变峰值蛋白的几个关键氨基酸残基来降低对接部位的疏水表面区域来设计活病毒的方法。少量残基的突变可以大大减少冠状病毒与受体的疏水结合,这可能显着降低病毒的感染性和可传播性。
A recent experimental study found that the binding affinity between the cellular receptor human angiotensin converting enzyme 2 (ACE2) and receptor-binding domain (RBD) in spike (S) protein of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is more than 10-fold higher than that of the original severe acute respiratory syndrome coronavirus (SARS-CoV). However, main-chain structures of the SARS-CoV-2 RBD are almost the same with that of the SARS-CoV RBD. Understanding physical mechanism responsible for the outstanding affinity between the SARS-CoV-2 S and ACE2 is the "urgent challenge" for developing blockers, vaccines and therapeutic antibodies against the coronavirus disease 2019 (COVID-19) pandemic. Considering the mechanisms of hydrophobic interaction, hydration shell, surface tension, and the shielding effect of water molecules, this study reveals a hydrophobic-interaction-based mechanism by means of which SARS-CoV-2 S and ACE2 bind together in an aqueous environment. The hydrophobic interaction between the SARS-CoV-2 S and ACE2 protein is found to be significantly greater than that between SARS-CoV S and ACE2. At the docking site, the hydrophobic portions of the hydrophilic side chains of SARS-CoV-2 S are found to be involved in the hydrophobic interaction between SARS-CoV-2 S and ACE2. We propose a method to design live attenuated viruses by mutating several key amino acid residues of the spike protein to decrease the hydrophobic surface areas at the docking site. Mutation of a small amount of residues can greatly reduce the hydrophobic binding of the coronavirus to the receptor, which may be significant reduce infectivity and transmissibility of the virus.