论文标题

传感器数据的多视图融合,以改善自动驾驶的感知和预测

Multi-View Fusion of Sensor Data for Improved Perception and Prediction in Autonomous Driving

论文作者

Fadadu, Sudeep, Pandey, Shreyash, Hegde, Darshan, Shi, Yi, Chou, Fang-Chieh, Djuric, Nemanja, Vallespi-Gonzalez, Carlos

论文摘要

我们提出了一种利用激光雷达回报和相机图像的多视图表示的对象检测和轨迹预测的端到端方法。在这项工作中,我们认识到不同观点表示的优点和劣势,我们提出了一种有效且通用的融合方法,可以从所有观点中汇总受益。我们的模型建立在最先进的鸟类视图(BEV)网络的基础上,该网络融合了一系列历史激光雷达数据的序列化功能以及栅格化的高清图,以执行检测和预测任务。我们使用其他LIDAR范围视图(RV)功能扩展了此模型,这些功能使用其本机,非量化表示中的原始LIDAR信息。 RV功能图被投影到BEV中,并与从LiDAR和高清图计算出的BEV功能融合在一起。然后将融合功能进一步处理,以在单一可训练的网络中输出最终检测和轨迹。此外,使用此框架以简单而有效的方式进行LIDAR和相机的RV融合以一种直接且计算上的方式执行。拟议的多视图融合方法改善了由自动驾驶车队以及公共Nuscenes数据集收集的专有大型现实世界数据的最先进,而计算成本的提高最小。

We present an end-to-end method for object detection and trajectory prediction utilizing multi-view representations of LiDAR returns and camera images. In this work, we recognize the strengths and weaknesses of different view representations, and we propose an efficient and generic fusing method that aggregates benefits from all views. Our model builds on a state-of-the-art Bird's-Eye View (BEV) network that fuses voxelized features from a sequence of historical LiDAR data as well as rasterized high-definition map to perform detection and prediction tasks. We extend this model with additional LiDAR Range-View (RV) features that use the raw LiDAR information in its native, non-quantized representation. The RV feature map is projected into BEV and fused with the BEV features computed from LiDAR and high-definition map. The fused features are then further processed to output the final detections and trajectories, within a single end-to-end trainable network. In addition, the RV fusion of LiDAR and camera is performed in a straightforward and computationally efficient manner using this framework. The proposed multi-view fusion approach improves the state-of-the-art on proprietary large-scale real-world data collected by a fleet of self-driving vehicles, as well as on the public nuScenes data set with minimal increases on the computational cost.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源