论文标题

分层样品与单位立方体分区的差异

Discrepancy of stratified samples from partitions of the unit cube

论文作者

Kiderlen, Markus, Pausinger, Florian

论文摘要

我们将抖动抽样的概念扩展到任意分区,并研究相关点集的差异。 Let $\mathbfΩ=(Ω_1,\ldots,Ω_N)$ be a partition of $[0,1]^d$ and let the $i$th point in $\mathcal{P}$ be chosen uniformly in the $i$th set of the partition (and stochastically independent of the other points), $i=1,\ldots,N$.对于此类集合的研究,我们介绍了均匀分布的三角形阵列的概念,并将此概念与文献中的相关概念进行了比较。我们证明了预期的$ {\ Mathcal {l} _p} $ - 差异,$ \ Mathbb {e} {\ Mathcal {\ Mathcal {l} _p}(\ Mathcal {p} _ {p} _ {\MathbfΩ}^P $, Equivolume分区$ \MATHBFΩ$总是严格小于预期的$ {\ Mathcal {l} _p} $ - $ p> 1 $的一组$ n $统一随机样本的差异。对于固定的$ n $,我们考虑基于单位立方体的等效分区的分层样本类别,或在其触及范围内均匀的正限制的凸组集合中。结果表明,这些类包含至少一个最小化的$ {\ Mathcal {l} _p} $ - 差异。我们使用针对小$ n $的明确结构来说明结果。此外,我们提出了一个分区家庭,似乎每$ n $都会提高蒙特卡洛采样的预期差异2。

We extend the notion of jittered sampling to arbitrary partitions and study the discrepancy of the related point sets. Let $\mathbfΩ=(Ω_1,\ldots,Ω_N)$ be a partition of $[0,1]^d$ and let the $i$th point in $\mathcal{P}$ be chosen uniformly in the $i$th set of the partition (and stochastically independent of the other points), $i=1,\ldots,N$. For the study of such sets we introduce the concept of a uniformly distributed triangular array and compare this notion to related notions in the literature. We prove that the expected ${\mathcal{L}_p}$-discrepancy, $\mathbb{E} {\mathcal{L}_p}(\mathcal{P}_{\mathbfΩ})^p$, of a point set $\mathcal{P}_\mathbfΩ$ generated from any equivolume partition $\mathbfΩ$ is always strictly smaller than the expected ${\mathcal{L}_p}$-discrepancy of a set of $N$ uniform random samples for $p>1$. For fixed $N$ we consider classes of stratified samples based on equivolume partitions of the unit cube into convex sets or into sets with a uniform positive lower bound on their reach. It is shown that these classes contain at least one minimizer of the expected ${\mathcal{L}_p}$-discrepancy. We illustrate our results with explicit constructions for small $N$. In addition, we present a family of partitions that seems to improve the expected discrepancy of Monte Carlo sampling by a factor of 2 for every $N$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源