论文标题

在3D点云上进行深度学习的最小对手示例

Minimal Adversarial Examples for Deep Learning on 3D Point Clouds

论文作者

Kim, Jaeyeon, Hua, Binh-Son, Nguyen, Duc Thanh, Yeung, Sai-Kit

论文摘要

随着卷积神经网络的最新发展,3D点云的深度学习显示了在各种3D场景理解任务(例如对象识别,语义分割)中的显着进步。但是,在关键的环境中,不太了解这种深度学习模型如何容易受到对抗性例子的影响。在这项工作中,我们探索了基于点云的神经网络的对抗性攻击。我们为对抗点云的产生提出了一个统一的配方,可以推广两种不同的攻击策略。我们的方法通过攻击基于点云的网络的分类能力,同时考虑示例的可感知并确保点操纵的最小水平来生成对抗示例。实验结果表明,我们的方法分别在合成和现实世界数据上分别达到了攻击成功率的89%和90%的最新性能,同时仅操纵总点的4%。

With recent developments of convolutional neural networks, deep learning for 3D point clouds has shown significant progress in various 3D scene understanding tasks, e.g., object recognition, semantic segmentation. In a safety-critical environment, it is however not well understood how such deep learning models are vulnerable to adversarial examples. In this work, we explore adversarial attacks for point cloud-based neural networks. We propose a unified formulation for adversarial point cloud generation that can generalise two different attack strategies. Our method generates adversarial examples by attacking the classification ability of point cloud-based networks while considering the perceptibility of the examples and ensuring the minimal level of point manipulations. Experimental results show that our method achieves the state-of-the-art performance with higher than 89% and 90% of attack success rate on synthetic and real-world data respectively, while manipulating only about 4% of the total points.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源