论文标题
一个统一的交错的DG方法,用于不稳定的Darcy-Forchheimer-Brinkman问题
A uniformly robust staggered DG method for the unsteady Darcy-Forchheimer-Brinkman problem
论文作者
论文摘要
在本文中,我们提出并分析了一种不稳定的达西·弗奇海默 - 布林克人问题的均匀交错的DG方法。我们的公式基于速度梯度 - 速度压力,并且可以灵活地应用于相当通用的多边形网格。我们放松了速度的切向连续性,这是实现均匀鲁棒性的关键要素。我们对半差异方案和完全离散的方案提出了良好的性格和误差分析,理论表明速度的误差估计值与压力无关。提出了几个数值实验以确认理论发现。
In this paper we propose and analyze a uniformly robust staggered DG method for the unsteady Darcy-Forchheimer-Brinkman problem. Our formulation is based on velocity gradient-velocity-pressure and the resulting scheme can be flexibly applied to fairly general polygonal meshes. We relax the tangential continuity for velocity, which is the key ingredient in achieving the uniform robustness. We present well-posedness and error analysis for both the semi-discrete scheme and the fully discrete scheme, and the theories indicate that the error estimates for velocity are independent of pressure. Several numerical experiments are presented to confirm the theoretical findings.