论文标题

具有五个顶点和八个边缘的图形的Gallai-Ramsey编号

Gallai-Ramsey numbers for graphs with five vertices and eight edges

论文作者

Su, Xueli, Liu, Yan

论文摘要

Gallai $ k $ - 颜色是$ k $ - 边缘的完整图形,其中没有彩虹三角形。对于给定图,$ g_1,g_2,g_3 $和非负整数$ r,s,t $带有$ k = r+s+s+t $,$ k $ -colored colored gallai-ramsey number $ gr_ gr_ {k_ {k_ {k_ {3}每个Gallai $ k $颜色$ k_ {n} $包含$ g_1 $的单色副本,由第一个$ r $颜色之一或单色copy $ g_2 $的单色副本,由中间$ s $颜色之一或单色颜色之一或单色copy of $ g_3 $,由$ g_3 $ coled $ g_3 $,由$ g_3 $颜色为$ t $ t $ t $ t $ t $ t $。在本文中,我们确定了加莱 - 拉姆西号的值,如果$ g_1 = b_1 = b_ {3}^{+} $,$ g_2 = s_2 = s_ {3}^+$和$ g_3 = k_3 $。然后获得Gallai-Ramsey编号$ gr_ {k {3}:b_ {3}^{+})$。因此,完全求解了具有五个顶点和八个边缘的图形的Gllai-Ramsey编号。此外,Gallai-ramsey编号$ gr_ {k}(k_ {3}:r \ cdot b_3^+,〜(k-r)\ cdot s_3^+)$,$ gr_ {k_ {k_ {3}: $ gr_ {k_ {3}:s \ cdot s_3^+,〜(k-s)\ cdot k_3)$尊重。

A Gallai $k$-coloring is a $k$-edge coloring of a complete graph in which there are no rainbow triangles. For given graphs $G_1, G_2, G_3$ and nonnegative integers $r, s, t$ with that $k=r+s+t$, the $k$-colored Gallai-Ramsey number $gr_{k}(K_{3}: r\cdot G_1,~ s\cdot G_2, ~t\cdot G_3)$ is the minimum integer $n$ such that every Gallai $k$-colored $K_{n}$ contains a monochromatic copy of $G_1$ colored by one of the first $r$ colors or a monochromatic copy of $G_2$ colored by one of the middle $s$ colors or a monochromatic copy of $G_3$ colored by one of the last $t$ colors. In this paper, we determine the value of Gallai-Ramsey number in the case that $G_1=B_{3}^{+}$, $G_2=S_{3}^+$ and $G_3=K_3$. Then the Gallai-Ramsey number $gr_{k}(K_{3}: B_{3}^{+})$ is obtained. Thus the Gllai-Ramsey numbers for graphs with five vertices and eight edges are solved completely. Furthermore, the the Gallai-Ramsey numbers $gr_{k}(K_{3}: r\cdot B_3^+,~ (k-r)\cdot S_3^+)$, $gr_{k}(K_{3}: r\cdot B_3^+,~ (k-r)\cdot K_3)$ and $gr_{k}(K_{3}: s\cdot S_3^+,~ (k-s)\cdot K_3)$ are obtained, respecticely.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源