论文标题

光谱种植和反驳削减,可着色性和社区的硬度随机图

Spectral Planting and the Hardness of Refuting Cuts, Colorability, and Communities in Random Graphs

论文作者

Bandeira, Afonso S., Banks, Jess, Kunisky, Dmitriy, Moore, Cristopher, Wein, Alexander S.

论文摘要

我们研究有效反驳图的K色的问题,或同等地证明其色数的下限。我们在稀疏的随机常规图中为此问题提供了平均计算硬度的正式证据,显示了简单的光谱证书的最佳性。该证据采用了计算Quiet种植的形式:我们构建了与典型的常规图相比,该图的分布明显小于典型的常规图,同时提供证据表明这两个分布是由大型算法无法区分的。我们将结果推广到更普遍的问题,即在最大k-cut上证明上限。 这种安静的种植是通过最大程度地减少种植结构(例如着色或切割)对图形频谱的影响而实现的。具体而言,种植的结构完全对应于邻接矩阵的特征向量。这避免了随机矩阵理论的俯卧撑效应,并延迟了在频谱或局部统计中可见播种的点。为了进一步说明这一点,我们为此问题的高斯类似物提供了类似的结果:尖峰模型的安静版本,在那里我们种植了一个特征空间,而不是添加通用的低级别扰动。 我们证明了区分两个分布的计算硬度的证据是基于三种不同的启发式方法:信仰传播的稳定性,局部统计层次层次结构和低度的可能性比率。非常有趣的结果,我们的结果包括多形矩阵模型的低度似然比的通用界限,以及对随机块模型的改进的低度分析。

We study the problem of efficiently refuting the k-colorability of a graph, or equivalently certifying a lower bound on its chromatic number. We give formal evidence of average-case computational hardness for this problem in sparse random regular graphs, showing optimality of a simple spectral certificate. This evidence takes the form of a computationally-quiet planting: we construct a distribution of d-regular graphs that has significantly smaller chromatic number than a typical regular graph drawn uniformly at random, while providing evidence that these two distributions are indistinguishable by a large class of algorithms. We generalize our results to the more general problem of certifying an upper bound on the maximum k-cut. This quiet planting is achieved by minimizing the effect of the planted structure (e.g. colorings or cuts) on the graph spectrum. Specifically, the planted structure corresponds exactly to eigenvectors of the adjacency matrix. This avoids the pushout effect of random matrix theory, and delays the point at which the planting becomes visible in the spectrum or local statistics. To illustrate this further, we give similar results for a Gaussian analogue of this problem: a quiet version of the spiked model, where we plant an eigenspace rather than adding a generic low-rank perturbation. Our evidence for computational hardness of distinguishing two distributions is based on three different heuristics: stability of belief propagation, the local statistics hierarchy, and the low-degree likelihood ratio. Of independent interest, our results include general-purpose bounds on the low-degree likelihood ratio for multi-spiked matrix models, and an improved low-degree analysis of the stochastic block model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源