论文标题

最佳线性滤波器,用于估计希尔伯特空间中随机函数

An optimal linear filter for estimation of random functions in Hilbert space

论文作者

Howlett, Phil, Totokhti, Anatoli

论文摘要

Let ${\mbox{$\mbox{\boldmath $f$}$}}$ be a square-integrable, zero-mean, random vector with observable realizations in a Hilbert space $H$, and let ${\mbox{$\mbox{\boldmath $g$}$}}$ be an associated square-integrable, zero-mean, random vector with在Hilbert Space $ k $中,实现是无法观察到的。我们以封闭的线性运算符$ x $的形式寻找最佳过滤器,该$ x $作用于可观察的vector $ {\ mbox {$ \ mbox {$ \ mbox {\ boldmath $ f $ f $} $}}}}}_ε\ y \ mbox {$ \ mbox {$ \ mbox {$ \ mbox {$ \ f $ f $} $} $} $} $} $} $} $ \ wideHat {{\ mbox {$ \ mbox {\ boldmath $ g $} $}}}}_ε= x {\ mbox {$ \ mbox {\ mbox {\ boldmath $ f $ f $} $} $}}_ε$我们假设所需的协方差运营商已知。结果用一个典型的例子说明了结果。

Let ${\mbox{$\mbox{\boldmath $f$}$}}$ be a square-integrable, zero-mean, random vector with observable realizations in a Hilbert space $H$, and let ${\mbox{$\mbox{\boldmath $g$}$}}$ be an associated square-integrable, zero-mean, random vector with realizations, which are not observable, in a Hilbert space $K$. We seek an optimal filter in the form of a closed linear operator $X$ acting on the observable realizations of a proximate vector ${\mbox{$\mbox{\boldmath $f$}$}}_ε \approx {\mbox{$\mbox{\boldmath $f$}$}}$ that provides the best estimate $\widehat{{\mbox{$\mbox{\boldmath $g$}$}}}_ε = X {\mbox{$\mbox{\boldmath $f$}$}}_ε$ of the vector ${\mbox{$\mbox{\boldmath $f$}$}}$. We assume the required covariance operators are known. The results are illustrated with a typical example.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源