论文标题
快速且最佳的平行算法用于谓词检测
Fast and Work-Optimal Parallel Algorithms for Predicate Detection
论文作者
论文摘要
最近,谓词检测问题显示在平行复杂性类NC中。在本文中,我们给出了第一个最佳的并行算法,以在用$ n $过程的分布式计算上解决谓词检测问题,每个过程最多$ $ m $状态。以前最著名的并行谓词检测算法ParallelCut具有时间复杂性$ O(\ log Mn)$和工作复杂性$ O(m^3n^3 \ log Mn)$。我们提供了两种算法,一种确定性算法,具有时间复杂性$ o(mn)$和工作复杂性$ O(Mn^2)$,以及一种随机算法,具有时间复杂性$ $(Mn)^{1/2 + O(1)} $和工作复杂性$ \ tilde $ \ tilde $ \ tilde {O} {o}(o}(Mn^2)$。此外,我们的算法对并行曲线的空间复杂性有所改善。我们的这两种算法都具有空间复杂性$ O(Mn^2)$,而ParallelCut具有空间复杂性$ O(m^2n^2)$。
Recently, the predicate detection problem was shown to be in the parallel complexity class NC. In this paper, we give the first work-optimal parallel algorithm to solve the predicate detection problem on a distributed computation with $n$ processes and at most $m$ states per process. The previous best known parallel predicate detection algorithm, ParallelCut, has time complexity $O(\log mn)$ and work complexity $O(m^3n^3\log mn)$. We give two algorithms, a deterministic algorithm with time complexity $O(mn)$ and work complexity $O(mn^2)$, and a randomized algorithm with time complexity $(mn)^{1/2 + o(1)}$ and work complexity $\tilde{O}(mn^2)$. Furthermore, our algorithms improve upon the space complexity of ParallelCut. Both of our algorithms have space complexity $O(mn^2)$ whereas ParallelCut has space complexity $O(m^2n^2)$.