论文标题
使用从“运动的分层方程式”提取的速率的激子转移
Exciton Transfer Using Rates Extracted From the "Hierarchical Equations of Motion''
论文作者
论文摘要
通过比较量子主方程(QME)的结果,研究了激子二聚体的Frenkel激子种群动力学,该结果涉及二阶扰动处理的速率,相对于激子耦合与``''(HEOM)(HEOM)的非扰动结果。通过为费率制定通用的liouville空间表达式,我们可以选择通过HEOM繁殖或应用累积扩展来评估它们。将电子过渡到浴模模式的耦合被建模为过度阻尼振荡器,以描述热浴组件,或者以不足的振荡器为例,以解释分子内振动。讨论了初始非平衡和平衡振动的病例。如果HEOM初始平衡,则通过极化子转化进入。指出在投影操作员形式上的背景下,非平衡和平衡方法之间的差异,我们确定了进一步的描述,其中传递动力学仅由波动驱动而无需散布。尽管进行了近似,但这种方法也可以在某些参数制度中产生有意义的结果。尽管对于所选模型,与累积扩展相比,HEOM没有技术优势来评估速率表达式,但在某些情况下,仅适用于HEOM的评估。例如,可以通过极化子转化将参考和相互作用的汉密尔顿分离分离,以说明在二阶治疗水平下,可以通过HEOM进行处理,以调整浴缸偶联和浴室振动的振动振荡之间的相互作用。
Frenkel exciton population dynamics of an excitonic dimer is studied by comparing results from a quantum master equation (QME) involving rates from second-order perturbative treatment with respect to the excitonic coupling with non-perturbative results from ``Hierarchical Equations of Motion'' (HEOM). By formulating generic Liouville-space expressions for the rates, we can choose to evaluate them either via HEOM propagations or by applying cumulant expansion. The coupling of electronic transitions to bath modes is modeled either as overdamped oscillators for description of thermal bath components or as underdamped oscillators to account for intramolecular vibrations. Cases of initial nonequilibrium and equilibrium vibrations are discussed. In case of HEOM initial equilibration enters via a polaron transformation. Pointing out the differences between the nonequilibrium and equilibrium approach in the context of the projection operator formalism, we identify a further description, where the transfer dynamics is driven only by fluctuations without involvement of dissipation. Despite this approximation, also this approach can yield meaningful results in certain parameter regimes. While for the chosen model HEOM has no technical advantage for evaluation of the rate expressions compared to cumulant expansion, there are situations where only evaluation with HEOM is applicable. For instance, a separation of reference and interaction Hamiltonian via a polaron transformation to account for the interplay between Coulomb coupling and vibrational oscillations of the bath at the level of a second-order treatment can be adjusted for a treatment with HEOM.