论文标题

基于多意见的超轻质图像超分辨率

Multi-Attention Based Ultra Lightweight Image Super-Resolution

论文作者

Muqeet, Abdul, Hwang, Jiwon, Yang, Subin, Kang, Jung Heum, Kim, Yongwoo, Bae, Sung-Ho

论文摘要

轻量级图像超分辨率(SR)网络对于现实世界应用具有最大的意义。有几种基于深度学习的SR方法具有出色的性能,但是它们的记忆力和计算成本是实际使用方面的障碍。为了解决这个问题,我们提出了一个多主管功能融合超分辨率网络(MAFFSRN)。 MaffSRN由提出的特征融合组(FFGS)组成,这些特征融合组用作特征提取块。每个FFG都包含一堆提出的多发块(MAB),这些块(MAB)结合在新型特征融合结构中。此外,具有经济高效的注意机制(CEA)的mAB有助于我们使用多种注意机制来完善和提取特征。综合实验表明,我们的模型优于现有的最新实验。我们通过MAFFSRN模型参加了AIM 2020高效SR挑战,并分别赢得了记忆使用,浮点操作(FLOPS)和参数数量的第一,第三和第四位。

Lightweight image super-resolution (SR) networks have the utmost significance for real-world applications. There are several deep learning based SR methods with remarkable performance, but their memory and computational cost are hindrances in practical usage. To tackle this problem, we propose a Multi-Attentive Feature Fusion Super-Resolution Network (MAFFSRN). MAFFSRN consists of proposed feature fusion groups (FFGs) that serve as a feature extraction block. Each FFG contains a stack of proposed multi-attention blocks (MAB) that are combined in a novel feature fusion structure. Further, the MAB with a cost-efficient attention mechanism (CEA) helps us to refine and extract the features using multiple attention mechanisms. The comprehensive experiments show the superiority of our model over the existing state-of-the-art. We participated in AIM 2020 efficient SR challenge with our MAFFSRN model and won 1st, 3rd, and 4th places in memory usage, floating-point operations (FLOPs) and number of parameters, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源