论文标题
a $ j_ \ mathrm {eff} = 1/2 $ pseudospinon continuum in Cairo $ _3 $
A $j_\mathrm{eff} = 1/2$ pseudospinon continuum in CaIrO$_3$
论文作者
论文摘要
在所谓的$ j_ \ mathrm {eff} = 1/2 $系统中,包括一些虹彩和鲜燃的系统,$ t_ \ mathrm {2G} $ orbitals在基态处的连贯叠加产生了强烈依赖于债券的几何形状。共鸣的非弹性X射线散射(RIX)$ _3 $上的测量结果揭示了典型的$ J_ \ Mathrm {eff} = 1/2 $ pseudospinon Continuum,尽管具有三维晶体结构,但具有一维磁系统的标志。实验光谱与弱耦合的自旋1/2链的计算出的磁动力学结构因子相比,非常相比。我们将这种准1D磁性的发作归因于$ J_ \ Mathrm {eff} = 1/2 $ pseudospins沿Cairo $ _3 $中的角和边缘共享债券之间的磁相互作用的基本差异。
In so-called $j_\mathrm{eff} = 1/2$ systems, including some iridates and ruthenates, the coherent superposition of $t_\mathrm{2g}$ orbitals in the ground state gives rise to hopping processes that strongly depend on the bond geometry. Resonant inelastic x-ray scattering (RIXS) measurements on CaIrO$_3$ reveal a prototypical $j_\mathrm{eff} = 1/2$ pseudospinon continuum, a hallmark of one-dimensional (1D) magnetic systems despite its three-dimensional crystal structure. The experimental spectra compare very well to the calculated magnetic dynamical structure factor of weakly coupled spin-1/2 chains. We attribute the onset of such quasi-1D magnetism to the fundamental difference in the magnetic interactions between the $j_\mathrm{eff} = 1/2$ pseudospins along the corner- and edge-sharing bonds in CaIrO$_3$.